Fast Proxy Experiment Design for Causal Effect Identification

Sepehr Elahi

¹EPFL, Switzerland ²TUM, Germany

Abstract

- Reformulated the minimum-cost intervention for causal effect identification problem using SAT and ILP frameworks.
- Developed algorithms that solve MCID up to six orders of magnitude faster than existing methods.
- Proposed a polynomial-time heuristic for MCID using adjustment sets.

 \longrightarrow : Direct causal link : Confounded link *W*: Tax on cigarettes (proxy) *X*: Smoking (treatment)

Motivation

Goal: Estimate the causal effect of a treatment on an outcome.

Challenges:

Impossible with obs. data (confounding)

Can't intervene on any var. (costly)

Y: Lung cancer (outcome)

Example:

The 3-SAT formula constructed as in Section 3.1 given G, *X*, and *Y* has a satisfying solution $\{x_{i,j}^*\}$ where $x_{i,0}^* = 0$ if $i \in \mathcal{I}$, if and only if $\mathcal I$ is a feasible solution to the MCID problem.

Cannot intervene on directly on *X*, but can intervene on *W* (proxy) to estimate the causal effect of *X* on *Y* .

Solution: Identify set of Minimum-Cost Interventions to IDentify causal effect of X on $Y:$ MCID problem

WP-MAXSAT Algorithm for MCID Problem: Find the optimal solution to the 3-SAT formula, $\{x_{i,j}^*\}$ that minimizes $\sum_{i=1}^m$

MCID Problem

Given: An acyclic directed mixed graph (ADMG) $\mathcal{G} = \langle V, \overrightarrow{E}, \overleftrightarrow{E} \rangle$, and $X, Y \in V$.

Goal: Find min-cost interventions to id. causal effect of *X* on *Y* :

 $\mathcal{I}^* \in \text{argmin} C(\mathcal{I}), \quad \text{s.t.}$ $\bm{\mathcal{I}}{\in}2^{2^V}$

 \exists functional $f(\cdot): \mathbb{P}_X(Y) = f(\{\mathbb{P}_{\mathcal{I}}\}_{\mathcal{I}\in\mathcal{I}}).$

MCID Problem is NP-Hard

The MCID problem is at least as hard as the weighted minimum hitting set problem, which is NP-hard to solve and approximate.

Solving the MCID Problem: Exact Algorithms

Previous approach: Required an exponential number of calls to an exponential-time algorithm (Akbari et al., 2022).

Our approach: Reformulate MCID problem as a weighted Partial MAX-SAT problem: WPMAX-SAT.

3-SAT Formula for MCID Problem

Do log-factor approximation algorithms for MCID exist? Incorporating the sample complexity of the estimators

WPMAX-SAT Results: Running Time

Experiment #1: 30,000 ADMGs with varying (bi)/directed sparsities with {20*, . . . ,* 100} variables.

Running time (s)

Running

time

 \bigodot

Experiment #2: 40,000 ADMGs with varying (bi)/directed sparsities with 20 variables.

¹ Sina Akbari¹ Jalal Etesami² Negar Kiyavash¹ Patrick Thiran¹

 $\sum_{i=1}^{m} (1 - x_i^*)$ $_{i,0}^{*}$ *)C*(*vi*).

Solving the MCID Problem: Heuristics

Surrogate problem for MCID: $\mathcal{I}^* \in \mathop{\mathrm{argmin}}_{\mathcal{I} \in 2^V} C(\mathcal{I})$

-
-

Heuristic Results: Running Time

Experiment #3: Real-world DAGs from the Bayesian Network Repository.

Future Work

-
- corresponding to each intervention set.

More Information

Generalized adjustment criterion: intervention set *I* and set *Z* s.t. $\mathbb{P}_X(Y) = \mathbb{E}_{\mathbb{P}_{\mathcal{I}}}[\mathbb{P}_{\mathcal{I}}(Y \mid X, Z)].$ s.t. $\mathbb{P}_X(Y) = \mathbb{E}_{\mathbb{P}_\mathcal{I}}[\mathbb{P}_\mathcal{I}(Y \mid X, Z)]$ for some Z. Reduces to minimum cut \implies Solvable in polynomial time.

Solves a special case of MCID \implies efficient heuristic for MCID.