

Data-Driven Learning of Contact Networks for Targeted Vaccination in Outbreaks

Sepehr Elahi Paula Mürmann Patrick Thiran

EPFL, Switzerland

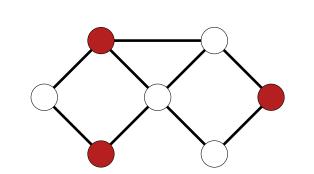
Motivation

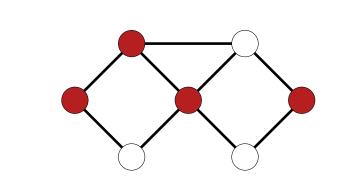
Mathematically rigorous approach to contact network recovery and vaccination in a reinfecting epidemic model, posing two **challenges**:

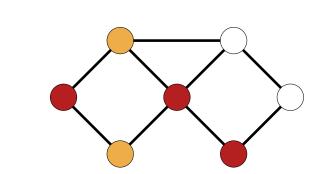
- Unknown Network: The underlying contact graph showing who can infect whom is unknown
- Limited Resources: We can only vaccinate a small fraction of the population, so vaccinations must be precise and impactful

The Propagation Model: Graphical SIS

- Individuals represented as vertices in a graph ${\cal G}$ with states Susceptible or Infected
- Edges represent all potential infection pathways
- Recovery ($\mathbf{I} \to \mathbf{S}$) with probability p_{rec}
- Infection (S ightarrow I) with probability $\propto p_{\rm inf}$ if neighbors are infected
- Vaccinated vertices: lower probability of infection







SusceptibleInfectedVaccinated

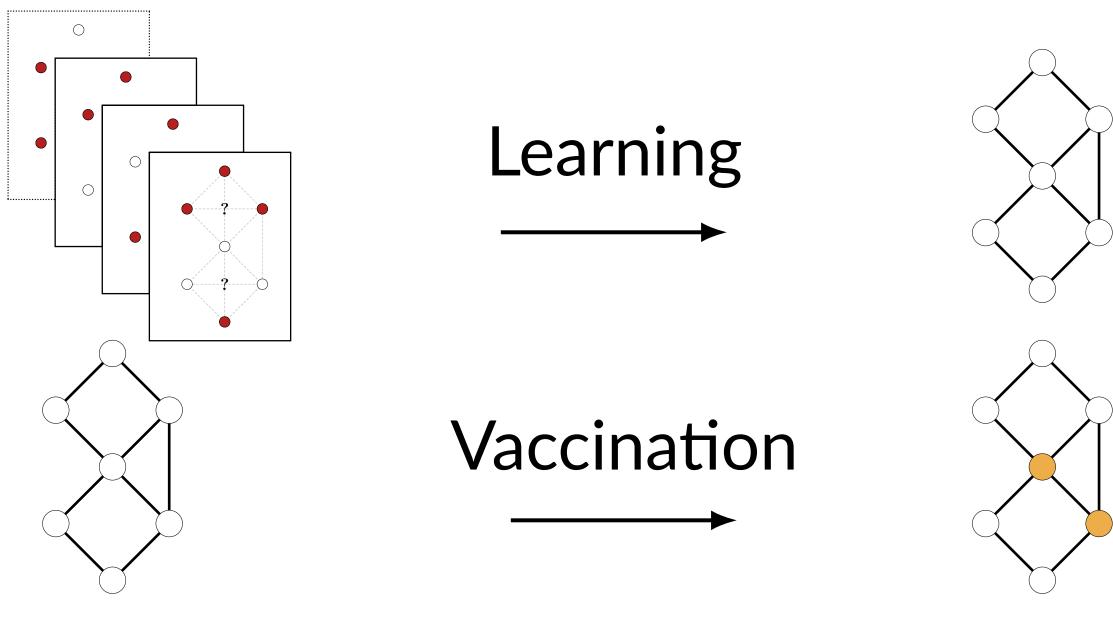
Vaccinating an Unknown Graph (VUG) Problem

Goal: Vaccinate K vertices to minimize the expected extinction time (i.e., the average time until all individuals have returned to state S)

Challenge: Infection pathways (edges) are unknown

Our Approach to Solving the VUG Problem

- 1. **Learn** the underlying graph from observations: $\hat{\mathcal{G}}$
- 2. Compute the K vertices to **vaccinate** using learned graph $\hat{\mathcal{G}}$



Learning the Graph: SISLearn

Observations:

- Infection states (**S** or **I**) of vertices over rounds $t \in \{1, 2, \dots, T\}$
- Edges are <u>not</u> observed

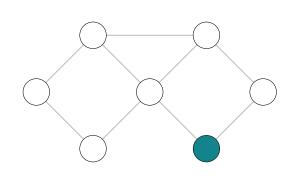
Idea: Learn **neighbors** of vertex v using a correlation indicator

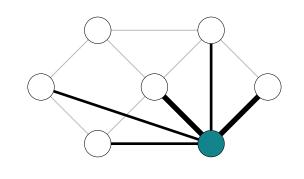
Correlation Indicator: Does a vertex u **influence** the state of v?

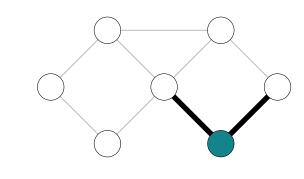
 $\mathbb{P}(v \text{ gets infected } \mid u \text{ is infected})$

Learning algorithm: Vertex-wise inclusion/exclusion mechanism

- 1. Build super-neighborhood from vertices with high influence on \boldsymbol{v}
- 2. Condition on the super-neighborhood and remove all vertices that do not influence \boldsymbol{v}



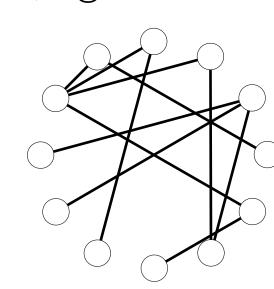




Vaccination Strategies

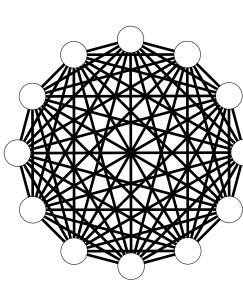
Observation: Minimizing extinction time \cong minimizing spectral radius of the graph $\rho(\mathcal{G}) := \max\{\lambda \mid \lambda \in \text{eigval}(\mathcal{G})\}$ [1]

Spectral Radius: one-number measure of a network's connectivity (higher ⇒ outbreak spreads easier and faster)



Sparse Graph

- low spectral radius
- fast extinction



Dense Graph

- high spectral radius
- slow extinction

Spectral Radius Minimization Problem (SRM)

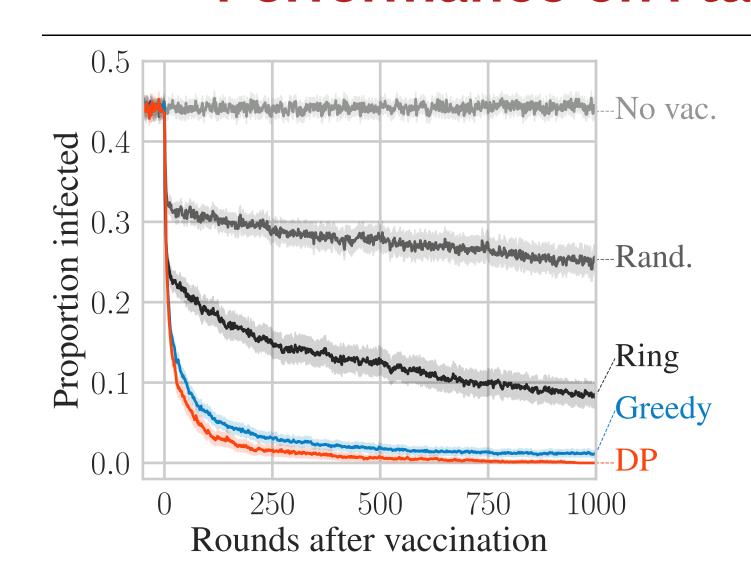
Idea: We pick K people whose vaccination optimally reduces the network's connectivity: $R^* = \operatorname{argmin}_{R \subseteq V, |R| \le K} \rho(\mathcal{G}[V \setminus R])$

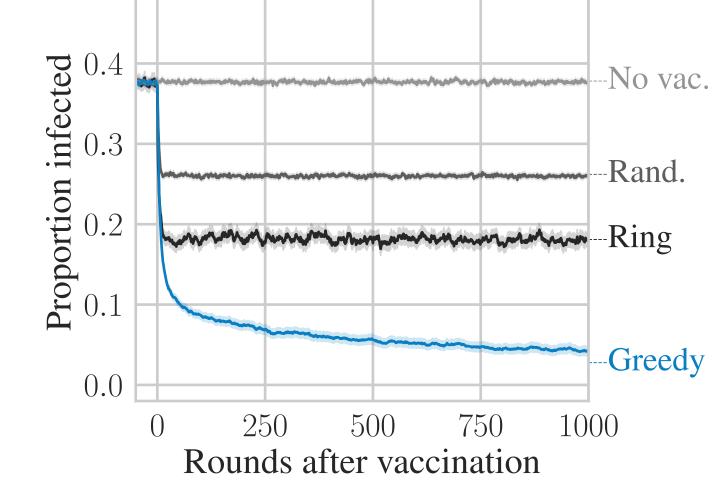
Challenge: SRM is NP-hard on general graphs (naïvely takes exponential time to compute)

Our Two Approaches:

- Dynamic Programming (DP): Exact but slower approach (best for networks with \leq 60 vertices)
- Greedy: Approximate but fast approach (works on networks with as many as 10'000s vertices)

Performance on Flu Outbreak Networks

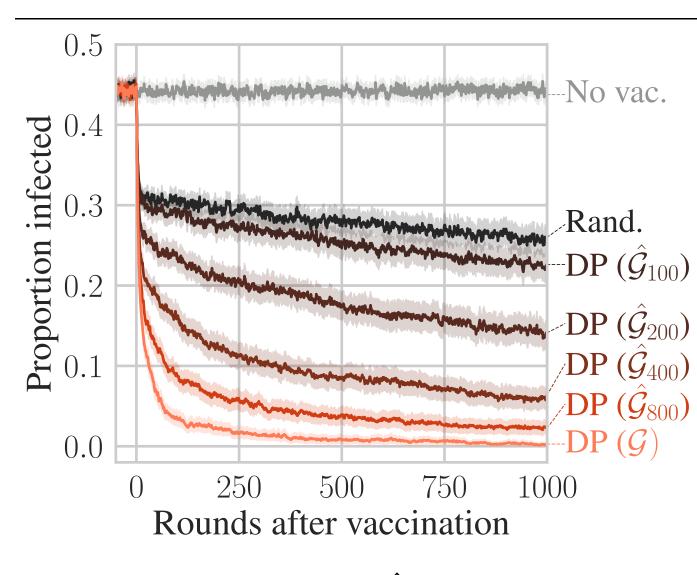


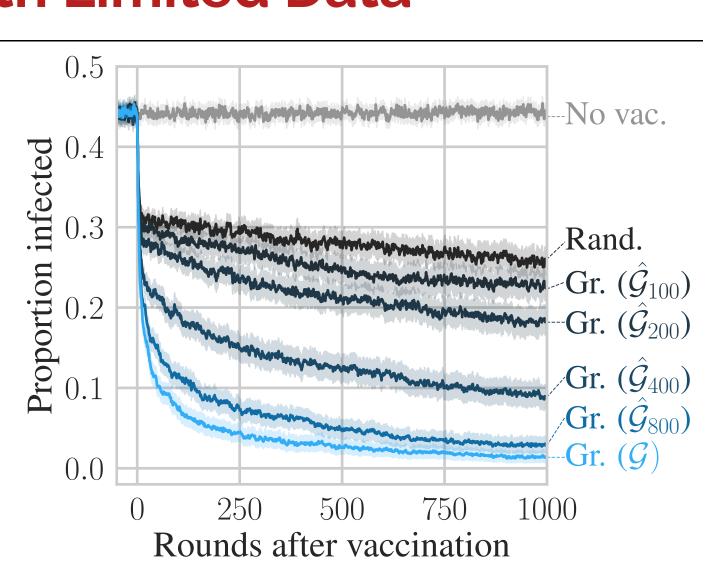


DP and Greedy vs. baselines on augmented networks from the 2009 H1N1/H3N2 outbreak in Beijing (40 vertices and 80 edges) [2], learned using SISLearn (\pmi is better)

Greedy vs. baselines on augmented networks from the 2009 H1N1 outbreak in Pennsylvania (286 vertices and 818 edges) [2], learned using SISLearn (\$\pm\$ is better)

Performance with Limited Data





DP on the learned graph $(\hat{\mathcal{G}}_{T'})$ from SISLearn using different numbers of rounds (T') for learning augmented 2009 Beijing H1N1/H3N2 networks (\downarrow is better)

Greedy on the learned graph $(\hat{\mathcal{G}}_{T'})$ from SISLearn using different numbers of rounds (T') for learning augmented 2009 Beijing H1N1/H3N2 networks (\downarrow is better)

References

- [1] P. Van Mieghem, D. Stevanović, F. Kuipers, C. Li, R. van de Bovenkamp, D. Liu, and H. Wang, "Decreasing the spectral radius of a graph by link removals," *Phys. Rev. E*, 2011.
- [2] J. C. Taube, P. B. Miller, and J. M. Drake, "An open-access database of infectious disease transmission trees to explore superspreader epidemiology," *PLOS Biology*, 2022.

