
Learn to Vaccinate: Combining Structure Learning and Effective Vaccination
for Epidemic and Outbreak Control

Sepehr Elahi * 1 Paula Mürmann * 1 Patrick Thiran 1

Abstract
The Susceptible-Infected-Susceptible (SIS) model
is a widely used model for the spread of infor-
mation and infectious diseases, particularly non-
immunizing ones, on a graph. Given a highly con-
tagious disease, a natural question is how to best
vaccinate individuals to minimize the disease’s
extinction time. While previous works showed
that the problem of optimal vaccination is closely
linked to the NP-hard Spectral Radius Minimiza-
tion (SRM) problem, they assumed that the graph
is known, which is often not the case in practice.
In this work, we consider the problem of minimiz-
ing the extinction time of an outbreak modeled
by an SIS model where the graph on which the
disease spreads is unknown and only the infection
states of the vertices are observed. To this end, we
split the problem into two: learning the graph and
determining effective vaccination strategies. We
propose a novel inclusion-exclusion-based learn-
ing algorithm and, unlike previous approaches,
establish its sample complexity for graph recov-
ery. We then detail an optimal algorithm for the
SRM problem and prove that its running time is
polynomial in the number of vertices for graphs
with bounded treewidth. This is complemented by
an efficient and effective polynomial-time greedy
heuristic for any graph. Finally, we present ex-
periments on synthetic and real-world data that
numerically validate our learning and vaccination
algorithms.

1. Introduction
Spreading models are essential frameworks for understand-
ing how information, diseases, or behaviors propagate

*Equal contribution 1EPFL, Switzerland. Correspondence
to: Sepehr Elahi <sepehr.elahi@epfl.ch>, Paula Mürmann
<paula.murmann@epfl.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

through networks (Nowzari et al., 2016). These models
capture the complex interactions between agents, helping to
predict dissemination patterns and devise strategies to con-
trol unwanted spread (Lokhov & Saad, 2017). Among these
models, the Susceptible-Infected-Susceptible (SIS) frame-
work is particularly well-suited for representing scenarios
where agents can undergo multiple cycles of infection and
recovery. While simple in structure, the interactions be-
tween neighboring agents in an SIS model can give rise to
complex behavior, which makes predicting and controlling
its dynamics challenging.

The SIS model is represented using a contact graph where
each vertex corresponds to an agent that can be in one of
two states: susceptible or infected. The state of each ver-
tex evolves probabilistically, influenced by the infection
statuses of its neighboring vertices, allowing for multiple
cycles of infection and recovery. In recent years, SIS mod-
els have seen applications in fields such as the modeling
of credit and financial markets (Chen & Fan, 2023; Barja
et al., 2019), rumor spreading in social networks (Dong
& Huang, 2018), malware attacks on computer networks
(Märtens et al., 2016), and epidemiology (Nowzari et al.,
2016; Grandits et al., 2019).

To mitigate the adverse effects of contagions modeled by
the SIS framework, it is often necessary to perform strategic
interventions. These interventions, in the form of regulatory
interventions (Chen & Fan, 2023), installation of updates
and patches (Muthukumar et al., 2024), vaccinations or
quarantines of vertices (i.e., person or community), are de-
signed to reduce transmission rates, limit the reach of the
contagion, and accelerate its extinction. However, devising
effective intervention strategies is particularly challenging
when the underlying graph is unknown, a common scenario
in practice (Rosenblatt et al., 2020).

We provide a motivating example in the field of epidemiol-
ogy. While we adopt the epidemiological terminology in
this work, our approaches are general and can be readily
applied to any other domain that utilizes the SIS framework.

Motivating Example. Consider the spread of cholera (Vib-
rio cholerae), a highly contagious waterborne disease that in-
dividuals can contract multiple times, making it well-suited

1

Structure Learning and Vaccination for Epidemic Control

to the SIS model (Ryan & Calderwood, 2000). In many
regions, the exact network of human interactions and envi-
ronmental factors that facilitate cholera transmission is often
not fully mapped, compelling public health officials to rely
on observed infection data to infer these interaction patterns.
By learning this underlying contact network, public health
authorities can implement ring vaccination strategies, which
involve targeting vaccinations to individuals to effectively
reduce transmission rates and extinction time (Ali et al.,
2016).

In this paper, we focus on determining effective vaccina-
tion strategies for an SIS epidemic when the underlying
graph is unknown and only infection data is observed. In-
spired by real-world approaches like ring vaccination, our
approach combines network learning with a targeted vac-
cination strategy to minimize disease extinction time and
control contagion spread.

Structure Learning. Most research concerning epidemic
structure recovery has been focused on Susceptible-Infected-
Removed (SIR) epidemic models, where each vertex can be
infected only once before becoming inert. In SIR models,
multiple infection instances, or cascades, are necessary to
accurately infer the underlying network structure (Netra-
palli & Sanghavi, 2012), with a common approach being
maximum likelihood estimation (MLE) (Gomez-Rodriguez
et al., 2012; Myers & Leskovec, 2010; Gray et al., 2020).

In contrast, learning the network structure of an SIS model
does not require multiple cascades since vertices can experi-
ence repeated infections. This allows for the observation of
more correlations between neighbors over time. However,
the absence of a directional infection flow in SIS models
introduces additional noise, complicating the learning.

To the best of our knowledge, the only work on structure
learning in SIS models is an MLE-based approach by Bar-
billon et al. (2020). Their approach can recover both likely
edges and infection parameters, but comes without theoreti-
cal guarantees and assumes a vertex is infected by only one
neighbor at a time, which is a strong assumption in practice.

We do not make this restrictive assumption in our work, and
instead propose a novel learning algorithm inspired by Ising
model learning from Bresler (2015) that leverages the fact
that stronger correlations occur between infection states of
neighboring vertices than those of non-neighbors.

Vaccination Strategies. To suppress an undesirable SIS
process, effective vaccination strategies are essential. Unlike
SIR models, SIS processes allow for repeated infections,
making them more challenging to eradicate. The extinction
time of an SIS process is closely related to the spectral radius
of the underlying graph (Ahn & Hassibi, 2014; Ruhi et al.,
2016), leading to approaches that employ spectral radius

minimization as a vaccination heuristic (Van Mieghem et al.,
2011; Kiji et al., 2022). However, these methods assume
the complete removal of either the vaccinated vertices or
a collection of their incident edges. More importantly, no
work has addressed the problem of vaccinations when the
graph structure is unknown.

Furthermore, existing work often considers continuous-time
SIS models, where vaccinations are applied continuously
and can boost vertices’ recovery rates (Abad Torres et al.,
2017; Scaman et al., 2016; Drakopoulos et al., 2014). In
contrast, we adopt a discrete-time SIS model with simulta-
neous updates and focus on one-time vaccinations that only
reduce infection probabilities. This model allows for both
sparser observations of the states and fewer interventions,
which is often more applicable in practice.

Original Contributions. We address the challenge of de-
vising effective vaccination strategies in an ongoing SIS
process where the underlying graph is unknown. We ap-
proach this problem by decomposing it into two tasks: first
learning the network from observed infection states, and
then designing effective vaccination strategies based on the
inferred graph. Our primary contributions are as follows:

• We formally introduce the Vaccinating an Unknown
Graph (VUG) problem, which aims to minimize the
extinction time of an SIS process on an unknown graph
through strategic vaccinations (Section 2).

• We propose a novel inclusion-exclusion algorithm for
learning the graph of an SIS epidemic, without making
the restrictive assumption of the previous approach,
and with learning guarantees (Section 3).

• Leveraging the Spectral Radius Minimization problem
as a proxy for effective vaccination, we develop an ex-
act dynamic programming-based vaccination strategy
that runs in polynomial time for graphs with bounded
treewidth. Additionally, we present a simple, yet effec-
tive, polynomial-time greedy heuristic (Section 4).

• We conduct comprehensive experiments on real and
synthetic data to evaluate the performance of our learn-
ing and vaccination algorithms. Our results demon-
strate significant improvements over existing baseline
methods in terms of vaccination efficacy (Section 5).

2. Problem Formulation
We first introduce the SIS model, followed by a definition of
vaccinations, and finally the problem of vaccinating vertices
to minimize the extinction time of the SIS process.

SIS Infection Model. We consider a Susceptible-Infected-
Susceptible (SIS) model of disease propagation, set on a

2

Structure Learning and Vaccination for Epidemic Control

graph G = (V,E). We also use V (G) to denote the set of
vertices of G when specificity is needed. The graph G is
composed of n vertices V = [n] := {1, . . . , n} representing
individuals or entities, and a set of undirected edges E that
capture the pathways through which the disease can spread.
Given the edge (i, j) ∈ E, we refer to vertices i and j as
neighbors, and we use N (j) := {i | (i, j) ∈ E} to denote
the neighborhood of vertex j. We use ∆ to denote the
maximum degree of the graph, i.e., ∆ = maxi∈V |N (i)|.
Finally, we denote by ρ(G) the spectral radius (i.e., largest
eigenvalue) of the adjacency matrix of the graph G.

We consider a discrete-time SIS model that proceeds over
rounds (time steps) indexed by t ∈ [T] = {1, . . . , T},
where each vertex i can be in one of two states: suscep-
tible or infected. The state of vertex i in round t is denoted
by Y (t)

i ∈ {0, 1} (1 for infected and 0 for susceptible). Fur-
thermore, we use Y (t)

S ∈ {0, 1}|S| to denote the state vector

of a vertex set S ⊆ V . We denote by Y (t) =
{
Y

(t)
i

}n
i=1

the

state vector of all vertices in round t, and Z(t) ∈ {0} ∪ [n]
to denote the number of infected vertices in round t, i.e.,
Z(t) =

∑n
i=1 Y

(t)
i .

The SIS model is characterized by three key parameters:
the seed probability pinit, the infection probability pinf, and
the recovery probability prec. In the initial round t = 0,
each vertex is infected independently with probability pinit.
As the infection progresses, an infected vertex transmits
the disease to its susceptible neighbors with probability pinf,
while each infected vertex recovers and becomes susceptible
again with probability prec.1 Below is a table summarizing
the conditional probabilities of the SIS model:

Event Description Probability

Y
(t+1)
i = 1 | Y (t)

i = 1 i remains infected 1− prec

Y
(t+1)
i = 0 | Y (t)

i = 1 i becomes susceptible prec

Y
(t+1)
i = 1 | Y (t)

i = 0 i becomes infected 1−∏
j∈N (i)(1− pinf · Y (t)

j)

Y
(t+1)
i = 0 | Y (t)

i = 0 i remains susceptible
∏
j∈N (i)(1− pinf · Y (t)

j)

We say that an SIS infection is extinct at step t if Z(t) = 0.
We denote the extinction time, if it exists, by τ := min{t ∈
[T] | Z(t) = 0}, and τ =∞, if otherwise.

Vaccination. In each round t, the vaccination strategy can
vaccinate a subset of vertices Rt ⊆ V to lower their infec-
tion probability. Formally, the strategy is given an overall
budget K ∈ Z+ and can vaccinate at most K vertices in
all rounds, i.e.,

∑T
t=1 |Rt| ≤ K. If a vertex i is vaccinated

in round t′, its infection probability is reduced by a fac-
tor of α ∈ [0, 1] in all future rounds, i.e., if i ∈ Rt′ , then
P
(
Y

(t+1)
i = 1 | Y (t)

i = 0
)
= 1−∏j∈N (i)(1−αpinf ·Y (t)

j)

1Note that neighbors infect each other independently and in-
fected vertices heal independently of one another.

for all t > t′.

VUG Problem. The goal of the Vaccinating an Unknown
Graph (VUG) problem is to select vertices to vaccinate in
order to minimize the expected extinction time, while only
observing the infection states Yt in each round t, i.e., the set
of edges E is unknown.

Formally, let π : [T]× {0, 1}nT → V denote a vaccination
strategy, where π(t, Yt) = Rt specifies the vertices to be
vaccinated in round t. The objective is then to minimize
the expected extinction time, subject to a vaccination bud-
get of K: minπ E[τπ] such that

∑T
t=1 |Rt| ≤ K, where τπ

represents the extinction time under strategy π. Note that
the VUG problem is online: the agent observes the infec-
tion states over time and must decide when and whom to
vaccinate, subject to the global budget K.

3. Learning the Graph
First, we present our approach for learning the graph from
the observed infection states and defer the discussion of our
vaccination strategies to the next section.

At a high-level, our learning approach makes use of the idea
that the infection state of a vertex j at time t is more likely
to be influenced by the infection states of its neighbors at
time t− 1 than by the infection states of other vertices. We
now formalize this idea.

3.1. Direct and Conditional Influence

Inspired by the work of Bresler (2015) on structure learning
in Ising models, we introduce two measures of how vertex
i influences vertex j in round t: the direct influence (DI),
µ
(t)
j|i , and the conditional influence (CI), ν(t)j|i,yS . Intuitively,

DI captures the probability that i directly infects j, while CI
measures how much i’s infection state affects j’s infection
probability while conditioning on a set S ⊆ V \ {i, j}. As
we will show, if S separates i from j in the graph, then i’s
impact on j vanishes.

Formally, we define

µ
(t)
j|i := P

(
Y

(t+1)
j = 1

∣∣∣Y (t)
j = 0, Y

(t)
i = 1

)
,

and, for any yS ∈ {0, 1}|S|,

ν
(t)
j|i,yS :=

P
(
Y

(t+1)
j = 1

∣∣∣Y (t)
j = 0, Y

(t)
i = 1, Y

(t)
S = yS

)
− P

(
Y

(t+1)
j = 1

∣∣∣Y (t)
j = 0, Y

(t)
i = 0, Y

(t)
S = yS

)
.

Using these quantities, we devise an inclusion-exclusion-
based algorithm to learn the neighbors of a vertex j. More

3

Structure Learning and Vaccination for Epidemic Control

precisely, we first learn a superset of the neighbors of j, and
then reject all non-neighbors. We explicitly explain both
parts below, providing all missing proofs in Appendix D.3.

Inclusion. If j is susceptible at time t and its neighbor i
is infected, then i infects j with probability pinf in the next
round. Then, as j may have other infected neighbors, we
get the following lower bound for µ(t)

j|i .

Lemma 3.1. If i, j ∈ V are neighbors, then

µ
(t)
j|i ≥ pinf ∀t ∈ [T].

We use this bound to construct a superset of the neighbors
of j by including all vertices i that satisfy µ(t)

j|i ≥ pinf.

Exclusion. To reject non-neighbors from a candidate
neighbor set, observe that if k is not a neighbor of j, then
conditioning on any set S ⊆ V \ {j, k} that separates k
from j forces the conditional influence of k on j to drop
to zero. Intuitively, once we fix j’s neighbors, j is isolated
from k. Hence, applying the local Markov property, j’s
transition probabilities in the next round only depends on
its neighboring states, but not on k.

We state and prove the above observation as a lemma below.

Lemma 3.2. Let j, k ∈ V be non-neighbors and let S ⊆
V \ {j, k} be a superset of neighbors of j, i.e., N (j) ⊆ S.
Then

ν
(t)
j|k,yS = 0 ∀t ∈ [T], yS ∈ {0, 1}|S|.

Finally, to ensure that using ν(t)j|i,yS to exclude non-neighbors
does not mistakenly remove a neighbor, we show that a
neighbor’s CI on vertex j is bounded away from zero.
Lemma 3.3. Let i, j ∈ V be neighbors and let S ⊆ V \{j}
be a superset of neighbors of j, i.e., N (j) ⊆ S. Then, for
any yS\{i} ∈ {0, 1}|S|−1, t ∈ [T]

ν
(t)
j|i,yS\{i}

≥ pinf(1− pinf)
∆−1.

We summarize the above lemmas in the following corollary.

Corollary 3.1. Let i, j ∈ V and S ⊆ V \ {j} such
that N (j) ⊆ S, then for any t ∈ [T] and any yS\{i} ∈
{0, 1}|S|−1:

i ∈ N (j)⇔ ν
(t)
j|i,yS\{i}

≥ pinf(1− pinf)
∆−1.

Proof. (⇒) By Lemma 3.3 and (⇐) by Lemma 3.2.

Next, we establish how we estimate the direct and condi-
tional influence from observations.

3.2. Estimation of Direct and Conditional Influence

For the purposes of theoretical analysis, including learning
guarantees and estimation of DI and CI, we follow the ap-
proach of Van De Bovenkamp & Van Mieghem (2014) and
work with a modified ergodic Markov chain, {Ψ(t)}t∈[T].
This chain has the same transition dynamics as the original
SIS process {Y (t)}, except that upon reaching the all-zero
(extinction) state, it immediately restarts from a predefined
initial distribution (see Appendix D.1 for details).

Crucially, the original SIS process {Y (t)} and the modified
chain {Ψ(t)} can be coupled up to the extinction time of
{Y (t)}. As a result, any analysis or estimation conducted
on {Ψ(t)} before its first restart captures the behavior of
the original process in the pre-extinction regime, which is
precisely the regime relevant for the VUG problem.

Stationary Assumption. The direct and conditional influ-
ences introduced earlier are time-specific and thus cannot
be reliably estimated from a single realization of either SIS
process. However, empirical evidence suggests that the
original process {Y (t)} quickly reaches a meta-stable state,
which corresponds to the stationary distribution of the mod-
ified process {Ψ(t)} (Van De Bovenkamp & Van Mieghem,
2014).

Assumption 3.1. The datasetD = {Ψ(t)}t∈TD
used for our

estimations is drawn from the unique stationary distribution
of the modified ergodic Markov chain {Ψ(t)}.

As shown in Figure 1 and further discussed in Appendix A.1,
our simulations demonstrate that the SIS process {Y (t)}
consistently enters a meta-stable regime within a few hun-
dred rounds across a broad range of parameters. This obser-
vation, along with the following remark, justifies both the
stationarity assumption and the use of the modified process
{Ψ(t)} as a proxy for {Y (t)}.
Remark 3.1. Using the modified process {Ψ(t)} is natural
in the context of the VUG problem: the SIS process {Y (t)}
either converges to a meta-stable state, all the while coupled
to process {Ψ(t)}, or it goes extinct. The VUG problem is
most challenging, and vaccinations critical, in the former
scenario, where the infection persists and requires strategic
vaccination for eradication.

The use of {Ψ(t)} and Assumption 3.1 will be further jus-
tified in Section 5, where we do not artificially enforce
ergodicity or stationarity, and yet our learning algorithm
sufficiently recovers the graph.

While as a consequence of Assumption 3.1, DI and CI be-
come stationary over time (i.e., for t, t′ ∈ TD, µ(t)

j|i = µ
(t′)
j|i

and ν(t)j|i,yS = ν
(t′)
j|i,yS), they still depend on a one-step tran-

sition between the conditioned and observed states. To
capture this, we will use Ψ(·) and Ψ(·+1) to denote a state

4

Structure Learning and Vaccination for Epidemic Control

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

Recovery probability (prec)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

In
fe

ct
io

n
pr

ob
ab

ili
ty

(p
in

f)

ρ(G) < prec/pinf

50 100 150 200 250
Time steps to meta-stability

Figure 1: Heatmap of the average time steps for an SIS pro-
cess {Y (t)} to reach meta-stability on graphs from the aug-
mented chn.2009.flu.1.00 dataset (n = 40, ρ(G) ≈
3.9) as a function of the infection (pinf) and recovery prob-
ability (prec). Meta-stability is determined using the con-
vergence of the proportion of infected nodes. The white
region at the bottom with no points indicates that no process
reached meta-stability. The shaded gray area indicates the
region where theory predicts rapid extinction (Theorem 4.1).
Averaged over 100 runs.

vector in a round and the state vector in the consecutive
round, respectively.

Now, given any vectors ψS′ ∈ {0, 1}|S′| and ψS ∈
{0, 1}|S|, we can define the standard (unbiased) estimator

of P
(
Ψ

(·+1)
S′ = ψS′ |Ψ(·)

S = ψS

)
using the dataset D as

P̂(Ψ(·+1)
S′ = ψS′ |Ψ(·)

S = ψS) =

1

I(ψS)

∑
t∈I(ψS)

1

{
Ψ

(t+1)
S′ = ψS′

}
,

where I(ψS) =
{
t ∈ TD : Ψ

(t)
S = ψS

}
denotes the set of

time indices in the dataset where the vertices in set S take
the values specified in vector ψS , and I(ψS) = |I(ψS)|.
Subsequently, the estimators of DI and CI, denoted by µ̂j|i
and ν̂j|i,ψS

, can be computed as described above.

3.3. Learning Algorithm and Guarantee

We now present our learning algorithm, called SISLearn,
with pseudocode given in Algorithm 1. SISLearn takes as
input the vertex set V , the dataset of infection state vectors
D, estimator error thresholds κµ and κν , infection proba-
bility pinf, and the maximum degree ∆ of the underlying
graph. Note that if pinf is not known, it can be estimated
from observational data, like done in Kirkeby et al. (2017)
via a mean-field approximation. Additionally, we will show
in Appendix A.3 that our algorithm is robust to misspecifi-
cation of pinf and max degree ∆.

The algorithm then learns the neighbors of each vertex j
via inclusion and exclusion. First, in lines 6-10, a super-
set of N (j), called S, is learned using Lemma 3.1. Next,
in lines 11-15, SISLearn prunes S by excluding non-
neighbors using Corollary 3.1. Notice that Corollary 3.1
holds for any configuration ψS\{i}, hence when applying
it in Line 12, SISLearn selects the most data-rich config-
uration that maximizes the minimum number of samples
available for estimating the two conditional probabilities
that constitute νj|i,S\{i}. Formally, for a given vertex pair
(i, j) and candidate neighbor set S ⊇ N (j) for j, we define
this configuration as ψ∗

S(i, j) :=

argmax
ψ∈{0,1}|S|−1

min
(
I(Ψ

(t)
j = 0,Ψ

(t)
i = 1,Ψ

(t)
S\{i} = ψ),

I(Ψ
(t)
j = 0,Ψ

(t)
i = 0,Ψ

(t)
S\{i} = ψ)

)
.

When clear from context, like in Line 12, we omit the de-
pendence on i and j, and simply write ψ∗

S .

Now, we state the learning guarantee for SISLearn that
combines a bound on the sample complexity with the cor-
rectness of the algorithm.

Theorem 3.1. (Learning Guarantee.) Let εµ, εν , ζ be
positive constants, with εν < pinf(1−pinf)

∆−1/2 and ζ ≤ 1.
Suppose Assumption 3.1 holds. Further, assume that for all
i ̸= j ∈ V , all S ⊆ V \ {i, j}, and all ψi, ψj ∈ {0, 1}, and
the respective ψ∗

S(i, j), the following inequality holds:

I(Ψi = ψi,Ψj = ψj ,ΨS = ψ∗
S(i, j)) ≥

2

(1− θ)2(min{εν/2, εµ})2
log

(
2n2(1 + 2n−1)

ζ

)
Then, with probability at least 1− ζ , Algorithm 1, when run
with thresholds κν = εν and κµ = εµ, returns the correct
edge set of the underlying graph: ED = E.

Remark 3.2. Note that θ, called the Markov contraction
coefficient, is a constant determined by the graph structure
and the transition probabilities of the Markov chain {Ψ(t)}.
It satisfies 0 ≤ θ < 1 and remains independent of the
number of samples T drawn from the process.

5

Structure Learning and Vaccination for Epidemic Control

Algorithm 1 SISLearn: Learn SIS Graph from Data

1: Input: Vertex set V , data D, thresholds κµ, κν , infec-
tion probability pinf, max degree ∆

2: Output: Learned graph edges ED
3: ED ← ∅
4: for j ∈ V do
5: S ← ∅
6: for i ∈ V do ▷ Inclusion
7: if µ̂j|i ≥ pinf − κµ then
8: S ← S ∪ {i}
9: end if

10: end for
11: for i ∈ S do ▷ Exclusion
12: if ν̂j|i,ψ∗

S
< pinf(1− pinf)

∆−1 − κν then
13: S ← S \ {i}
14: end if
15: end for
16: ED ← ED ∪ {{j, i} : i ∈ S}
17: end for
18: return ED

4. Vaccination Strategies
Assuming we have learned the graph using SISLearn, we
present two vaccination strategies inspired by the surrogate
problem of Spectral Radius Minimization (SRM). We first
establish a theoretical result relating the extinction time of
the SIS model to the spectral radius of the graph and the
SRM problem.

4.1. Extinction Time

Below, we formally state (and provide a proof in Ap-
pendix D.4.1) a sufficient condition for logarithmic extinc-
tion time that relates extinction time to the spectral radius
of the graph. This result was first empirically established by
Wang et al. (2003), and proven for this model by Ruhi et al.
(2016).
Theorem 4.1. The expected extinction time E[τ] is upper
bounded by O(log n) if ρ(G) < prec/pinf.

Theorem 4.1 establishes that rapid extinction hinges on the
spectral radius of the graph, which leads to the natural ap-
proach of reducing the graph’s spectral radius through vac-
cination or quarantining, modeled as the removal of vertices
or edges. (Van Mieghem et al., 2011; Saha et al., 2015; Kiji
et al., 2022). Building on this established approach, we fo-
cus on the surrogate SRM problem through vertex removals.
It is important to note that our setting remains general: vac-
cinating a node does not remove it entirely unless α = 0. As
will be demonstrated in Section 5, our vaccination strategies
are highly effective in reducing the extinction time, further
justifying the use of the spectral radius as a proxy for the
extinction time.

Spectral Radius Minimization Problem. Given a graph
G = (V,E) with n vertices and a budget K, the SRM
problem aims to find a subset of at most K vertices R ⊆ V
whose removal minimizes the spectral radius. Formally, the
SRM problem solves

R∗ = argmin
R⊆V,|R|≤K

ρ(G[V \R]). (1)

While the SRM problem is known to be NP-hard in general
(Van Mieghem et al., 2011), in what follows we present a
polynomial-in-n optimal algorithm for graphs of bounded
treewidth and a fast greedy heuristic for general graphs. In
Appendix B, we provide an optimal algorithm for trees2.

4.2. Vaccination Strategy for Graphs

Here, we propose a vaccination strategy that is an optimal
algorithm for the SRM problem. Our approach consists
of a dynamic programming (DP) procedure performed on
a tree decomposition of the graph, allowing us to prove
polynomial-in-n time complexity for graphs of bounded
treewidth. For readers unfamiliar with tree decomposition
techniques, we detail a simpler optimal algorithm for trees
in Appendix B, which shares the core ideas of our main
algorithm. Additionally, we provide a primer on tree decom-
positions in Appendix C to facilitate understanding.

Algorithm Overview. Our algorithm, pseudocode given
in Algorithm 2, employs a binary search strategy to identify
the smallest possible spectral radius λε achievable by re-
moving at most K vertices from a graph G, up to a precision
of ε > 0. The binary search is performed on [0,∆], as ∆,
the max degree of G, is a trivial upper bound for spectral
radius (Van Mieghem et al., 2011).

For each candidate value of λ during the binary search, we
invoke a feasibility check algorithm, pseudocode given in
Algorithm 3, to determine whether there exists a set of at
most K vertices whose removal ensures that the spectral
radius of the resulting graph does not exceed λ. Below, we
detail the feasibility check algorithm.

Given a graph G = (V,E) with treewidth tw(G) ≤ ω, we
first decompose the graph into a nice tree decomposition
T = (T , {Xt}t∈V (T)), where T is a tree whose every
node t is assigned a bag Xt ⊆ V . To minimize ambiguity,
we use vertex (vertices) when referring to elements of the
graph G and node (nodes) when referring to elements of the
tree decomposition T .

We then perform a bottom-up dynamic programming algo-
rithm on the tree decomposition to find the optimal vacci-
nation set for each node t of the tree. First, define Vt as

2Note that the SRM problem is NP-hard for general graphs
and thus there exists no polynomial-time exact algorithm, unless
P = NP.

6

Structure Learning and Vaccination for Epidemic Control

the union of bags in the subtree T rooted at t, including
Xt. Then, for every node t ∈ V (T), every S ⊆ Xt, and all
c ∈ {0, . . . ,K} define DP[t, S, c] as

DP[t, S, c] ={
R ⊆ Vt : |R| = c, S ∩R = ∅, ρ(G[Vt \R]) ≤ λ

}
.

In words, DP[t, S, c] stores the set of feasible removal sets
of size c from Vt such that S is preserved and the spectral
radius of the induced subgraph is at most λ. Notice that if
r ∈ V (T) is the root of T , thenR ∈ DP[r, ∅, c] is a feasible
removal set with c elements that satisfies ρ(G[V (G) \R]) ≤
λ. If no such set exists (i.e., DP[r, ∅, c] = ∅), then there
exists no feasible removal set of size at most c.

In what follows, we describe how Algorithm 3 populates
DP[t, ·, ·], initialized to ∅, for each node t of the tree in post-
order, depending on the node’s type (refer to Appendix C
for types).

Leaf node: If t is a leaf node, thenXt = ∅ and DP[t, ∅, 0] =
{∅}.
Introduce node: If t is an introduce node with child node
t′, then, Xt = Xt′ ∪ {v} for some v ∈ V (G). For every
S ⊆ Xt and for all 1 ≤ c ≤ K, if v ̸∈ S, then we set
DP[t, S, c] = {R′ ∪ {v} : R′ ∈ DP[t′, S, c− 1]}.
If v ∈ S, then we need to verify if ρ(G[Vt \ R′]) ≤ λ
for each R′ ∈ DP[t′, S \ {v}, c]. So, DP[t, S, c] = {R′ ∈
DP[t′, S \ {v}, c] : ρ(G[Vt \R′]) ≤ λ}.
Forget node: If t is a forget node with child node t′, then,
Xt = Xt′ \ {w} for some w ∈ V (G) and thus Vt = Vt′ .
Then, for every S ⊆ Xt and 0 ≤ c ≤ K, set DP[t, S, c] =
DP[t′, S, c] ∪ DP[t′, S ∪ {w}, c].
Join node: If t is a join node with two children t1 and t2,
then Xt = Xt1 = Xt2 . Then, for every S ⊆ Xt, 0 ≤
c1, c2 ≤ K, and R1 ∈ DP[t1, S, c1], R2 ∈ DP[t2, S, c2],
define R = R1 ∪ R2. Then, iteratively set DP[t, S, c] =
DP[t, S, c] ∪ {R} if c = |R| ≤ K and ρ(G[Vt \R]) ≤ λ.

Computational Complexity. We now state (and prove
in Appendix D.4.3) the time complexity of Algorithm 2,
showing that it is polynomial in the number of vertices n
for graphs of bounded treewidth ω.

Theorem 4.2. Given an input graph G with
treewidth tw(G) ≤ ω, budget K, and precision ε,
Algorithm 2 has a worst-case time complexity of
O
(
nO(1)KO(1)2O(ω) log(∆/ε)

)
.

The time complexity of our algorithm aligns with that of
other NP-hard problems, such as the maximum independent
set and Hamiltonian path, which are solvable in polynomial-
in-n time on graphs with bounded treewidth using DP (Bod-
laender et al., 2013). It should be noted that despite achiev-

Algorithm 2 DP algorithm for vaccination

1: Input: Graph G, treewidth upperbound tw(G) ≤ ω,
budget K, precision ε > 0

2: Output: Set of vertices to vaccinate Rε
3: low← 0
4: high← ∆ ▷ Use max. deg. as upper bound
5: Rε ← ∅
6: T ← a nice tree decomposition of G with width ≤ ω
7: while high− low > ε do
8: mid← low+high

2
9: (feasible, R)← ALGORITHM 3(G, T , K, mid)

10: if feasible then
11: high← mid
12: Rε ← R
13: else
14: low← mid
15: end if
16: end while
17: Return Rε

Algorithm 3 Feasibility checker for graph vaccination

1: Input: Graph G, nice tree decomposition T , budget K,
threshold λ

2: Output: Feasibility indicator and vaccination set R
3: Initialize DP[t, S, c] ← ∅ for all t of T , S ⊆ Xt, and
c ∈ [0,K]

4: Tpo ← nodes of T in post-order
5: r ← root of T
6: for node t ∈ Tpo do
7: for subset S ⊆ Xt do
8: for c ∈ [0,K] do
9: Update DP[t, S, c] based on node type

10: end for
11: end for
12: end for
13: if DP[r, ∅, c] = ∅ for all c ∈ [0,K] then
14: Return (False, ∅)
15: else
16: c∗ ← min{c ∈ [0,K] : DP[r, ∅, c] ̸= ∅}
17: Return (True, any R ∈ DP[r, ∅, c∗])
18: end if

ing similar complexity, the decision version of the SRM
problem cannot, to the best of our knowledge, be expressed
in monadic second-order logic, rendering Courcelle’s theo-
rem3 inapplicable (Courcelle, 1990). Consequently, it was
previously unknown whether a polynomial-in-n time algo-
rithm for SRM on bounded treewidth graphs existed.

3Informally, Courcelle’s theorem states that any graph decision
problem expressible in monadic second-order logic can be decided
in linear time for graphs of bounded treewidth. We refer the reader
to Chapter 7.4 of Cygan et al. (2015) for more details.

7

Structure Learning and Vaccination for Epidemic Control

Algorithm 4 Greedy vaccination algorithm

1: Input: Graph G, budget K
2: Output: Set of nodes R to vaccinate
3: R← ∅
4: G′ ← G
5: while |R| < K do
6: v∗ ← argminv∈V (G′) ρ(G′[V (G′) \ {v}])
7: R← R ∪ {v∗}
8: G′ ← G′[V (G′) \ {v∗}]
9: end while

10: Return R

4.3. Heuristic Vaccination Strategy

Algorithm 2 exactly solves the NP-hard SRM problem as
a surrogate for the vaccination problem. Although this al-
gorithm is optimal and achieves the lowest spectral radius
possible for a given budget and thus the lowest extinction
time, as will be verified in the experiments, it is computation-
ally expensive for general graphs with unknown treewidth.
To address this, we also propose a heuristic algorithm that
is not only computationally efficient but also performs well
in practice.

Algorithm Overview. Algorithm 4 iteratively removes
the vertex that reduces the spectral radius the most.

Computational Complexity. The worst-case complexity
of the algorithm is O

(
Kn3

)
. The complexity arises from

(i) K iterations in the outer loop; (ii) the spectral radius
computation, which has a complexity of O(n2) using the
Lanczos algorithm for sparse graphs with O(n) nonzero
entries (Cullum & Donath, 1974); and (iii) sorting the ver-
tices based on the reduction in spectral radius, which has a
complexity of O(n).

4.4. Combined Learning and Vaccination

To solve the VUG problem, we first use SISLearn to infer
the graph from data. Subsequently, we utilize the learned
graph with either Algorithm 2 or Algorithm 4 to select K
vertices for vaccination, depending on the graph’s treewidth.
Specifically, as supported by the empirical results in Ap-
pendices A.8 and A.9, DP Algorithm 2 is computationally
feasible for graphs with treewidth up to 15, enabling exact
vaccination. For larger treewidths, we employ Greedy
Algorithm 4.

5. Experiments
In this section, we present experiments using real-world
graphs to evaluate the performance of our combined learn-
ing and vaccination approach on the VUG problem. A
comprehensive set of experiments analyzing the perfor-

mance of our learning and vaccination algorithms sepa-
rately are presented in Appendix A. We provide the im-
plementation of our algorithms as well as all baselines at
https://github.com/sepehr78/learn2vac.

Setting. We consider a contagion spreading on a real-
world spreading network from OutbreakTrees (Taube et al.,
2022), a database of infectious disease transmission trees
compiled from real-world disease outbreaks. We utilize the
chn.2009.flu.1.00 dataset, representing the transmis-
sion tree of the 2009 influenza A outbreak in Beijing, China,
comprising n = 40 vertices. To simulate variability, we aug-
ment the tree by adding edges between unconnected vertex
pairs independently with a probability of 0.05, generating
40 distinct random graphs, with an average treewidth of 8.

We simulate the SIS model on these graphs with parameters:
pinit = 0.3, pinf = 0.3, and prec = 0.5. The vaccination bud-
get is set toK = 7 with α = 0.2, reflecting the 80% efficacy
of the 2009 Beijing influenza vaccine (Wu et al., 2010). For
each graph, we generate 40 random initial infection states
and run the simulation for T = 2000 rounds.

Algorithms. Our approach involves two main steps: (1)
learning the graph from the observed infection data of the
first T/2 rounds using Algorithm 1, and (2) applying our
vaccination algorithms, DP (Algorithm 2) and Greedy (Al-
gorithm 4) to the learned graph.

It should be noted that we attempted to compare SISLearn
with the MLE approach of Barbillon et al. (2020), the only
work to-date on SIS structure learning, but they assume
each vertex gets infected by only one neighbor at a time.
This assumption enforces a linear relationship between the
number of infected neighbors and the probability of a vertex
becoming infected. In our model, all infected neighbors
attempt to infect a susceptible vertex simultaneously, lead-
ing to an overall higher infection probability. This causes
their method to always return a complete graph in our more
general setting, making meaningful comparison infeasible.

For comparison, we evaluate the following baseline vacci-
nation strategies on the learned graph:

• Rand.: vaccinate K random vertices.
• LD: vaccinate K vertices with the largest degree.
• PO (Scaman et al., 2016): vaccinate K vertices at the

front of the priority order.
• GW (Saha et al., 2015): vaccinate K vertices appearing

in the most number of closed walks.

The hyperparameters required by the above methods have
been set as prescribed in the original papers. We set
κµ = κν = 0.01 for Algorithm 1 and use the positive-
instance driven approach of Tamaki (2019) to compute the
tree decomposition for Algorithm 2.

8

https://github.com/sepehr78/learn2vac
https://github.com/sepehr78/learn2vac

Structure Learning and Vaccination for Epidemic Control

0 250 500 750 1000

Rounds after vaccination

0.0

0.1

0.2

0.3

0.4

0.5
Pr

op
or

tio
n

in
fe

ct
ed

LD
GW

Rand.

PO

No vac.

Greedy
DP

Figure 2: Proportion of infected nodes versus rounds after
vaccination using different strategies on learned graph from
SISLearn. Shaded regions represent 99% confidence in-
terval.

0 250 500 750 1000

Rounds after vaccination

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
in

fe
ct

ed

Rand.
DP (Ĝ100)

DP (Ĝ200)
DP (Ĝ400)
DP (Ĝ800)
DP (G)

No vac.

Figure 3: Proportion of infected nodes versus rounds after
vaccination via Algorithm 2 on the learned graph (ĜT ′)
from SISLearn using different numbers of rounds (T ′)
for learning. Shaded regions represent 99% confidence
interval.

Results. Figure 2 presents the average proportion of in-
fected nodes over all runs against rounds following vacci-
nation, comparing different vaccination strategies applied
to the learned graph. Notably, all non-random vaccina-
tion methods—except PO—outperform random vaccina-
tion, demonstrating that our learning algorithm has effec-
tively learned the graph. Our proposed algorithms, DP and
Greedy, consistently outperform all baselines. Specif-
ically, DP achieves the lowest infection rates across all
rounds, with Greedy closely trailing behind. LD ranks
third, demonstrating that while targeting high-degree nodes
is effective, it does not match the performance of our algo-
rithms. Notably, the PO strategy performs the worst, even
underperforming the random vaccination baseline. This un-
derperformance is likely because PO is designed for ‘heal-
ing’ vertices in continuous-time SIS models (Scaman et al.,
2016), making it less suitable for our discrete-time simula-
tion.

Robustness Analysis. To assess the robustness of our
combined approach, we vary the number of learning rounds
used by SISLearn before applying Algorithm 2 for vacci-
nation. We experiment with learning rounds ranging from
100 to 800 and illustrate the results in Figure 3. Our ap-
proach consistently outperforms random vaccination even
with as few as 100 learning rounds. Performance improves
significantly as the number of learning rounds increases,
eventually plateauing around 800 rounds. This indicates
that our method remains effective across varying amounts
of learning data. We provide additional robustness analysis
using the other vaccination algorithms in Appendix A.4.

6. Conclusion
We introduced the VUG problem, combining structure learn-
ing for SIS processes with strategic vaccination when the
underlying contact network is unknown. Our framework
combines a novel inclusion-exclusion–based learning algo-
rithm—supported by sample-complexity guarantees—with
vaccination strategies aimed at minimizing the graph’s
spectral radius. In particular, the proposed dynamic pro-
gramming approach achieves optimal results on graphs of
bounded treewidth, while a simpler greedy heuristic scales
effectively to general networks. Experimental results on
real-world data confirm that our method significantly accel-
erates epidemic extinction and reduces infection rates, even
when limited observations are available.

For future work, a promising direction involves examin-
ing which aspects of the network structure are learned first,
allowing us to optimize the balance between prolonged
learning and timely vaccinations. Furthermore, establish-
ing theoretical approximation guarantees for vaccination
heuristics remains an open problem.

Acknowledgments
This work was partially supported by the SNF project
200021 204355 / 1, Causal Reasoning Beyond Markov
Equivalencies.

9

Structure Learning and Vaccination for Epidemic Control

Impact Statement
This paper presents theoretical advances in machine learning
for epidemic modeling and outbreak control, with potential
applications in public health. We defer discussion of broader
societal consequences to domain-specific implementations
of our framework.

References
Abad Torres, J., Roy, S., and Wan, Y. Sparse resource

allocation for linear network spread dynamics. IEEE
Transactions on Automatic Control, 62(4):1714–1728,
2017. doi: 10.1109/TAC.2016.2593895.

Ahn, H. J. and Hassibi, B. On the mixing time of the SIS
Markov chain model for epidemic spread. In 53rd IEEE
Conference on Decision and Control, pp. 6221–6227,
2014. doi: 10.1109/CDC.2014.7040364.

Ali, M., Debes, A. K., Luquero, F. J., Kim, D. R., Park,
J. Y., Digilio, L., Manna, B., Kanungo, S., Dutta, S., Sur,
D., Bhattacharya, S. K., and Sack, D. A. Potential for
controlling cholera using a ring vaccination strategy: re-
analysis of data from a cluster-randomized clinical trial.
PLOS medicine, 13(9):e1002120, 2016.

Barbillon, P., Schwaller, L., Robin, S., Flachs, A., and
Stone, G. D. Epidemiologic network inference. Statis-
tics and Computing, 30(1):61–75, 2020. doi: 10.1007/
s11222-019-09865-1.

Barja, A., Martı́nez, A., Arenas, A., Fleurquin, P., Nin, J.,
Ramasco, J. J., and Tomás, E. Assessing the risk of
default propagation in interconnected sectoral financial
networks. EPJ Data Science, 8(1):32, 2019. doi: 10.
1140/epjds/s13688-019-0211-y.

Bodlaender, H. L., Cygan, M., Kratsch, S., and Nederlof,
J. Deterministic single exponential time algorithms for
connectivity problems parameterized by treewidth. In
Fomin, F. V., Freivalds, R., Kwiatkowska, M., and Peleg,
D. (eds.), Automata, Languages, and Programming, pp.
196–207, Berlin, Heidelberg, 2013. Springer. doi: 10.
1007/978-3-642-39206-1 17.

Borse, R. H., Shrestha, S. S., Fiore, A. E., Atkins, C. Y.,
Singleton, J. A., Furlow, C., and Meltzer, M. I. Effects
of vaccine program against pandemic influenza a(h1n1)
virus, united states, 2009–2010. Emerging Infectious
Diseases, 19(3):439–448, March 2013. doi: 10.3201/
eid1903.120394.

Bresler, G. Efficiently learning ising models on arbitrary
graphs. In Proceedings of the Forty-Seventh Annual ACM
Symposium on Theory of Computing, STOC ’15, pp.
771–782, New York, NY, USA, 2015. Association for
Computing Machinery. doi: 10.1145/2746539.2746631.

Chen, N. and Fan, H. Credit risk contagion and opti-
mal dual control—An SIS/R model. Mathematics and
Computers in Simulation, 210:448–472, 2023. doi:
10.1016/j.matcom.2023.03.031.

Courcelle, B. The monadic second-order logic of graphs.
i. recognizable sets of finite graphs. Information and
Computation, 85(1):12–75, 1990. doi: https://doi.org/10.
1016/0890-5401(90)90043-H.

Cullum, J. and Donath, W. E. A block lanczos algorithm for
computing the q algebraically largest eigenvalues and a
corresponding eigenspace of large, sparse, real symmetric
matrices. In 1974 IEEE Conference on Decision and Con-
trol including the 13th Symposium on Adaptive Processes,
pp. 505–509, 1974. doi: 10.1109/CDC.1974.270490.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D.,
Marx, D., Pilipczuk, M., Pilipczuk, M., and Saurabh, S.
Treewidth, pp. 151–244. Springer International Publish-
ing, Cham, 2015. doi: 10.1007/978-3-319-21275-3 7.

Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M.,
Van Rooij, J. M. M., and Wojtaszczyk, J. O. Solving
connectivity problems parameterized by treewidth in sin-
gle exponential time. ACM Transactions on Algorithms,
18(2), 2022. doi: 10.1145/3506707.

Dong, S. and Huang, Y.-C. SIS Rumor Spreading Model
With Population Dynamics in Online Social Networks.
In 2018 International Conference on Wireless Communi-
cations, Signal Processing and Networking (WiSPNET),
pp. 1–5, 2018. doi: 10.1109/WiSPNET.2018.8538507.

Drakopoulos, K., Ozdaglar, A., and Tsitsiklis, J. An efficient
curing policy for epidemics on graphs. In 53rd IEEE
Conference on Decision and Control, pp. 4447–4454,
2014. doi: 10.1109/CDC.2014.7040083.

Gomez-Rodriguez, M., Leskovec, J., and Krause, A. Infer-
ring Networks of Diffusion and Influence. ACM Trans-
actions on Knowledge Discovery from Data, 5(4):21:1–
21:37, 2012. doi: 10.1145/2086737.2086741.

Grandits, P., Kovacevic, R. M., and Veliov, V. M. Opti-
mal control and the value of information for a stochas-
tic epidemiological sis-model. Journal of Mathematical
Analysis and Applications, 476(2):665–695, 2019. doi:
https://doi.org/10.1016/j.jmaa.2019.04.005.

Gray, C., Mitchell, L., and Roughan, M. Bayesian Inference
of Network Structure From Information Cascades. IEEE
Transactions on Signal and Information Processing over
Networks, 6:371–381, 2020. doi: 10.1109/TSIPN.2020.
2990276.

10

Structure Learning and Vaccination for Epidemic Control

Kiji, M., Hasibul Hasan, D. M., Segre, A. M., Pemmaraju,
S. V., and Adhikari, B. Near-optimal spectral disease miti-
gation in healthcare facilities. In 2022 IEEE International
Conference on Data Mining (ICDM), pp. 999–1004, 2022.
doi: 10.1109/ICDM54844.2022.00121.

Kirkeby, C., Halasa, T., Gussmann, M., Toft, N., and
Græsbøll, K. Methods for estimating disease transmis-
sion rates: Evaluating the precision of poisson regression
and two novel methods. Scientific Reports, 7(1):9496,
August 2017. doi: 10.1038/s41598-017-09209-x.

Kontorovich, L. A. and Ramanan, K. Concentration inequal-
ities for dependent random variables via the martingale
method. The Annals of Probability, 36(6):2126–2158,
November 2008.

Lokhov, A. Y. and Saad, D. Optimal deployment of
resources for maximizing impact in spreading pro-
cesses. Proceedings of the National Academy of Sci-
ences, 114(39):E8138–E8146, 2017. doi: 10.1073/pnas.
1614694114.

Märtens, M., Asghari, H., van Eeten, M., and Van Mieghem,
P. A time-dependent sis-model for long-term computer
worm evolution. In 2016 IEEE Conference on Communi-
cations and Network Security (CNS), pp. 207–215. IEEE,
2016.

Muthukumar, S., Senthilkumar, M., and Veeramani, C. Op-
timal Control of Computer Virus Spreading Model with
Partial Immunization. Wireless Pers Commun, 134(4):
2287–2313, 2024. doi: 10.1007/s11277-024-11013-6.

Myers, S. and Leskovec, J. On the convexity of latent social
network inference. In Lafferty, J., Williams, C., Shawe-
Taylor, J., Zemel, R., and Culotta, A. (eds.), Advances
in Neural Information Processing Systems, volume 23.
Curran Associates, Inc., 2010.

Netrapalli, P. and Sanghavi, S. Learning the graph of epi-
demic cascades. SIGMETRICS Performance Evaluation
Review, 40(1):211–222, 2012. doi: 10.1145/2318857.
2254783.

Nowzari, C., Preciado, V. M., and Pappas, G. J. Analysis and
Control of Epidemics: A Survey of Spreading Processes
on Complex Networks. IEEE Control Systems Magazine,
36(1):26–46, 2016. doi: 10.1109/MCS.2015.2495000.

Rosenblatt, S. F., Smith, J. A., Gauthier, G. R., and Hébert-
Dufresne, L. Immunization strategies in networks with
missing data. PLOS Computational Biology, 16(7):
e1007897, 2020. doi: 10.1371/journal.pcbi.1007897.

Ruhi, N. A., Thrampoulidis, C., and Hassibi, B. Improved
bounds on the epidemic threshold of exact sis models on
complex networks. In 2016 IEEE 55th Conference on

Decision and Control (CDC), pp. 3560–3565, 2016. doi:
10.1109/CDC.2016.7798804.

Ryan, E. T. and Calderwood, S. B. Cholera vaccines. Clini-
cal infectious diseases, 31(2):561–565, 2000.

Saha, S., Adiga, A., Prakash, B. A., and Vullikanti, A.
K. S. Approximation Algorithms for Reducing the
Spectral Radius to Control Epidemic Spread. In Pro-
ceedings of the 2015 SIAM International Conference on
Data Mining (SDM), Proceedings, pp. 568–576. Soci-
ety for Industrial and Applied Mathematics, 2015. doi:
10.1137/1.9781611974010.64.

Scaman, K., Kalogeratos, A., and Vayatis, N. Suppressing
Epidemics in Networks Using Priority Planning. IEEE
Transactions on Network Science and Engineering, 3(4):
271–285, 2016. doi: 10.1109/TNSE.2016.2600029.

Tamaki, H. Positive-instance driven dynamic programming
for treewidth. Journal of Combinatorial Optimization, 37
(4):1283–1311, 2019. doi: 10.1007/s10878-018-0353-z.

Taube, J. C., Miller, P. B., and Drake, J. M. An open-
access database of infectious disease transmission trees
to explore superspreader epidemiology. PLOS Biology,
20(6):1–17, 2022. doi: 10.1371/journal.pbio.3001685.

Van De Bovenkamp, R. and Van Mieghem, P. Time to
metastable state in sis epidemics on graphs. In 2014 Tenth
International Conference on Signal-Image Technology
and Internet-Based Systems, pp. 347–354, 2014. doi:
10.1109/SITIS.2014.82.

Van Mieghem, P., Stevanović, D., Kuipers, F., Li, C., van de
Bovenkamp, R., Liu, D., and Wang, H. Decreasing the
spectral radius of a graph by link removals. Phys. Rev. E,
84(1):016101, 2011. doi: 10.1103/PhysRevE.84.016101.

Wang, Y., Chakrabarti, D., Wang, C., and Faloutsos, C.
Epidemic spreading in real networks: an eigenvalue view-
point. In 22nd International Symposium on Reliable Dis-
tributed Systems, 2003. Proceedings., pp. 25–34, 2003.
doi: 10.1109/RELDIS.2003.1238052.

Wu, J., Xu, F., Lu, L., Lu, M., Miao, L., Gao, T., Ji, W., Suo,
L., Liu, D., Ma, R., Yu, R., Zhangzhu, J., Liu, W., Zeng,
Y., Li, X., Zhang, X., Pang, X., and Deng, Y. Safety and
effectiveness of a 2009 h1n1 vaccine in beijing. New
England Journal of Medicine, 363(25):2416–2423, 2010.
doi: 10.1056/NEJMoa1006736.

11

Structure Learning and Vaccination for Epidemic Control

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input max degree (∆̂)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

In
pu

ti
nf

ec
tio

n
pr

ob
ab

ili
ty

(p̂
in

f)

0.0 0.2 0.4 0.6 0.8 1.0
F1 score

Figure 4: Heatmap of the average F1 score of SISLearn with 1000 rounds of learning on the augmented
chn.2009.flu.1.00 dataset (true pinf = 0.3 and true ∆ = 10) as a function of the input infection probability
(p̂inf) and input max degree (∆̂). Averaged over 100 runs.

A. Additional Experiments
In this appendix, we provide additional extensive experiments on the performance and robustness of our learning and
vaccination algorithms. All experiments were conducted on a machine equipped with two Intel Xeon E5-2680 v3 CPUs,
256GB of RAM, and running Ubuntu 24.04.1 LTS. We used Python 3.11.11 and NetworkX 3.4.2 for graph manipulation
and generation.

A.1. Time to Reach Meta-Stability

To investigate the time required for the SIS process to reach a meta-stable state, we conducted simulations using the
same augmented chn.2009.flu.1.00 graphs from the main experiments (Section 5). For these simulations, we
systematically varied the infection probability (pinf) and the recovery probability (prec) from 0 to 1. Meta-stability was
determined to be reached when the proportion of infected nodes over a moving window of recent time steps converged,
indicating that the overall infection level had stabilized. We recorded the number of rounds (time steps) until this convergence
criterion was met.

Results. Figure 1 displays a heatmap of the average number of time steps required for the SIS process to reach meta-
stability, as a function of the infection probability (pinf) and recovery probability (prec). The average spectral radius of the
graphs was ρ(G) ≈ 3.9. The results demonstrate that, for a wide range of parameter settings where the infection persists
(i.e., does not quickly go extinct, indicated by the white region and the theoretically predicted extinction region shown
in gray), meta-stability is achieved relatively quickly. Even in the slowest-converging scenarios (brighter regions in the
heatmap), meta-stability is reached within 250 rounds. This rapid convergence to a quasi-stationary state provides empirical
support for Assumption 3.1.

12

Structure Learning and Vaccination for Epidemic Control

200 400 600 800 1000 1200 1400

Number of learning rounds

0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

Algorithm
SISLearn (Alg. 1)

(a) Augmented chn.2009.flu.1.00 graphs

400 800 1200 1600 2000

Number of learning rounds

0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

Algorithm
SISLearn (Alg. 1)

(b) Augmented usa.2009.flu.1.00 graphs

Figure 5: Average F1-score of the learned graph from SISLearn versus number of learning rounds used on the augmented
chn.2009.flu.1.00 and usa.2009.flu.1.00 graphs. Shaded regions represent the 99% confidence interval.

A.2. Learning Performance of SISLearn

We investigate the performance of SISLearn in learning the underlying graph of the SIS epidemic on real-world outbreak
graphs. We consider two settings:

2009 flu outbreak in Beijing, China. This is the same setting as the main experiments, using the chn.2009.flu.1.00
network with n = 40 vertices, augmented with 5% additional edges, to get a total of 40 graphs. We simulate the SIS model
on these graphs with parameters: initial infection probability pinit = 0.3, infection probability pinf = 0.3, and recovery
probability prec = 0.5

2009 flu outbreak in Pennsylvania, USA. For this setting, we use the much larger usa.2009.flu.1.00 contact
network, from the 2009 H1N1 influenza outbreak in Pennsylvania, USA, with n = 286 vertices (Taube et al., 2022). We
augment the network with 1% additional edges to get a total of 40 graphs. We simulate the SIS model on these graphs with
parameters: initial infection probability pinit = 0.3, infection probability pinf = 0.2, and recovery probability prec = 0.5.

Results. We present the average F1-score of the learned graph from SISLearn versus the number of learning rounds
used in Figure 5. We observe that for both settings, the F1-score increases rapidly with the number of learning rounds at the
start and eventually plateauing. Importantly, SISLearn is able to achieve a high F1-score (> 0.9) for both graphs with
sufficient number of learning rounds.

A.3. Robustness of SISLearn to Input Misspecification

We evaluate the robustness of SISLearn to misspecification of its input parameters: the infection probability (pinf)
and the maximum degree (∆). The experimental setup mirrors that described in Section 5, using the augmented
chn.2009.flu.1.00 dataset. For data generation, the true SIS model parameters were an infection probability
pinf = 0.3 and an actual maximum degree ∆ = 10. SISLearn was then executed for 1000 learning rounds, with systemat-
ically varied inputs for p̂inf (ranging from 0.01 to 1.00) and ∆̂ (ranging from 1 to 15). After learning, we computed the F1
score of graph recovery, averaged over 100 independent simulation runs.

Results. Figure 4 presents a heatmap of the average F1 score achieved by SISLearn as a function of the input infection
probability p̂inf (y-axis) and the input maximum degree ∆̂ (x-axis). The heatmap clearly demonstrates that SISLearn
exhibits considerable robustness to variations in these input parameters. Optimal performance, indicated by F1 scores
approaching 1.0 (brightest regions), is observed when p̂inf is in the vicinity of the true value (e.g., approximately 0.2 to

13

Structure Learning and Vaccination for Epidemic Control

0.4) and ∆̂ is sufficiently large (e.g., ∆̂ ≥ 7). Importantly, SISLearn maintains high F1 scores (often exceeding 0.8)
even when p̂inf is moderately overestimated (e.g., up to 0.5− 0.6) or when ∆̂ is underestimated (e.g., down to 5− 6). This
robustness suggests that precise prior knowledge of pinf and ∆ is not a stringent requirement for achieving effective graph
recovery with SISLearn.

A.4. Performance of SISLearn with Different Vaccination Strategies

Here, we present results on the robustness of our learning algorithm combined with other vaccination strategies. We use
the same setting as in Section 5 and vary the number of learning rounds from 100 to 800. We then apply separately apply
Greedy, LD, and GW for vaccination.

Results. In Figure 6, we present the average fraction of infected nodes over time following vaccination using the different
algorithms on the learned graph. We observe that Greedy is the only algorithm that outperforms random with only 100
rounds of learning. Greedy also performs the best with the most learning rounds, followed by LD and GW. Interestingly,
LD performs better than Greedy when T ′ = 200 and T ′ = 400, potentially indicating that our learning algorithm recovers
high-degree vertices quickly.

A.5. Performance of Algorithm 2 and Algorithm 4

Here, we present results on the effectiveness of our proposed vaccination strategies, Algorithm 2 and Algorithm 4, on
the real-world outbreak graphs. Unlike in the main experiments, we do not used the learned graph and instead apply our
algorithms and baselines directly on the original graphs.

2009 flu outbreak in Beijing, China. This is the same setting as the main experiments, using the chn.2009.flu.1.00
network with n = 40 vertices, augmented with 5% additional edges, to get a total of 40 graphs. We simulate the SIS model
on these graphs with parameters: initial infection probability pinit = 0.3, infection probability pinf = 0.3, and recovery
probability prec = 0.5. We set the vaccination budget to K = 7 with an efficacy of 80% (α = 0.2).

2009 flu outbreak in Pennsylvania, USA. For this setting, we use the much larger usa.2009.flu.1.00 contact
network, from the 2009 H1N1 influenza outbreak in Pennsylvania, USA, with n = 286 vertices. We augment the network
with 1% additional edges to get a total of 40 graphs, with an average treewidth of 58. We simulate the SIS model on these
graphs with initial infection probability pinit = 0.3, infection probability pinf = 0.2, and recovery probability prec = 0.5. We
set the vaccination budget to K = 50 with an efficacy of 75% (α = 0.25), reflecting the efficacy of the influenza vaccine in
the US in 2009 (Borse et al., 2013). As the treewidths are much larger than the chn.2009.flu.1.00 dataset (58 versus
8), computing the tree decomposition for Algorithm 2 is computationally very expensive, and thus we only present results
for Algorithm 4. Similarly, computing the priority order for PO is also infeasible as it is an NP-hard problem (Scaman et al.,
2016), and thus we do not present results for this method.

Baselines. For convenience we restate the baselines as used in the main paper:

• Rand.: vaccinate K random vertices.
• LD: vaccinate K vertices with the largest degree.
• PO (Scaman et al., 2016): vaccinate K vertices at the front of the priority order.
• GW (Saha et al., 2015): vaccinate K vertices appearing in the most number of closed walks.

Results. We present the average proportion of infected nodes over time following vaccination using different strategies on
the augmented chn.2009.flu.1.00 and usa.2009.flu.1.00 graphs in Figure 7. We observe that Algorithm 2
consistently outperforms all baselines, followed by Greedy and LD (see Figure 7a). On the larger usa.2009.flu.1.00
graph in Figure 7b, Greedy performs the best, followed by LD and GW.

A.6. Impact of Epidemic Severity on Vaccination

We further evaluate our combined learning and vaccination approach under varying conditions of epidemic severity and
available vaccination resources. The base experimental setting is identical to that described in Section 5 (augmented
chn.2009.flu.1.00 dataset, SISLearn for graph inference, followed by vaccination). We consider two specific
scenarios:

14

Structure Learning and Vaccination for Epidemic Control

0 250 500 750 1000

Rounds after vaccination

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
in

fe
ct

ed

Rand.

Greedy (Ĝ100)
Greedy (Ĝ200)

Greedy (Ĝ400)
Greedy (Ĝ800)
Greedy (G)

No vac.

(a) Greedy vaccination algorithm (Algorithm 4)

0 250 500 750 1000

Rounds after vaccination

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
in

fe
ct

ed

Rand.

LD (Ĝ100)

LD (Ĝ200)
LD (Ĝ400)
LD (Ĝ800)
LD (G)

No vac.

(b) LD vaccination algorithm

0 250 500 750 1000

Time step after vaccination

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
in

fe
ct

ed GW (Ĝ100)

GW (Ĝ200)

GW (Ĝ400)

GW (Ĝ800)

GW (G)

Rand.

No vac.

(c) GW vaccination algorithm

Figure 6: Proportion of infected nodes versus rounds after vaccination using different algorithms on the learned graph (ĜT ′)
from SISLearn with varying numbers of learning rounds (T ′). Shaded regions represent a 99% confidence interval.

• Low Severity / Low Budget: The SIS model is simulated with a lower infection probability pinf = 0.15. After learning
the graph from the first T/2 rounds of this simulation, vaccination strategies are applied with a reduced budget of
K = 3.

• High Severity / High Budget: The SIS model is simulated with a higher infection probability pinf = 0.80 and an
increased budget of K = 25.

All other parameters, including recovery probability prec = 0.5, vaccination efficacy α = 0.2, and learning parameters for
SISLearn, remain consistent with those in Section 5. Results are averaged over 40 runs.

Results. Figure 8 illustrates the proportion of infected nodes following vaccination for the two described scenarios.

In the low severity scenario with a low budget (Figure 8a), the epidemic is inherently less aggressive. Even without
vaccination, the infection level is considerably lower than in the main experiment. With a small budget of K = 3, our DP

15

Structure Learning and Vaccination for Epidemic Control

0 250 500 750 1000

Rounds after vaccination

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
in

fe
ct

ed

LD
GW

Rand.

PO

No vac.

Greedy
DP

(a) Augmented chn.2009.flu.1.00 graphs

0 500 1000 1500

Rounds after vaccination

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
in

fe
ct

ed

LD

GW

Rand.

No vac.

Greedy

(b) Augmented usa.2009.flu.1.00 graphs

Figure 7: Proportion of infected nodes versus rounds after vaccination using different strategies on the augmented
chn.2009.flu.1.00 and usa.2009.flu.1.00 graphs. Shaded regions represent the 99% confidence interval.

and Greedy strategies, applied to the graph learned by SISLearn, rapidly reduce the infection to near extinction. While
other strategies also show benefit, the targeted approaches achieve the most significant reduction, effectively controlling the
mild outbreak with minimal resources.

Conversely, in the high severity scenario with a high budget (Figure 8b), the “No vaccination” case shows a very high
persistent infection level. Here, a substantial vaccination effort is required. Our DP and Greedy algorithms again
demonstrate superior performance, achieving a much more significant reduction in infection compared to baseline heuristics
like LD and GW. This highlights the importance of optimized vaccination strategies when facing highly contagious outbreaks.

A.7. Empirical Running Time of SISLearn

Here, we empirically demonstrate that our SISLearn algorithm is computationally efficient and can scale to very large
graphs. We generate connected Erdős-Rényi (ER) graphs with n ∈ {1000, . . . , 10000} vertices and edge probability
p = 1.1 log n/n. We set the number of learning rounds to T = 2000 and run SISLearn to learn the underlying graph,
measuring its running time. For each n, we generate 10 random graphs and report the average running time.

Results. Figure 9 shows the average running time of SISLearn across different number of vertices. As shown,
SISLearn can easily handle graphs as large as n = 10000 vertices and ≈ 50000 edges, taking only 9 minutes to run,
demonstrating that SISLearn is computationally efficient and can scale to very large graphs.

A.8. Empirical Running Time of DP

In this section, we empirically demonstrate the superior performance of our DP Algorithm 2 in solving the SRM problem on
graphs with bounded and unbounded treewidth, compared with an exhaustive search algorithm.

Small Treewidth. We generate graphs of treewidth 3 with n ∈ {10, . . . , 98} vertices, and set the budget K = 0.2n. We
then run our DP algorithm and an exhaustive search algorithm, which checks all

(
n
k

)
subsets, to find the optimal vaccination

set (i.e., solve the SRM problem), measuring their running time. Note that both approaches are exact algorithms and return
the optimal solution. For each n, we generate 40 random graphs and report the average running time.

Unbounded Treewidth. We generate connected Erdős-Rényi (ER) graphs with n ∈ {10, . . . , 90} vertices and edge
probability p = 1.1 log n/n, which results in graphs with unbounded treewidth. We also set the budget K = 0.2n and run
our DP algorithm and the exhaustive search algorithm to find the optimal vaccination set, measuring their running time. For
each n, we also generate 40 random graphs and report the average running time.

16

Structure Learning and Vaccination for Epidemic Control

0 250 500 750 1000

Rounds after vaccination

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n
in

fe
ct

ed

LD
GW
Rand.

No vac.

Greedy
DP

(a) Low severity (pinf = 0.15) and low budget (K = 3).

0 250 500 750 1000

Rounds after vaccination

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n
in

fe
ct

ed

LD
GW
Rand.

No vac.

Greedy
DP

(b) High severity (pinf = 0.80) and high budget (K = 25).

Figure 8: Proportion of infected nodes versus rounds after vaccination using different strategies on the graph learned by
SISLearn from the augmented chn.2009.flu.1.00 dataset with low and high severity. Shaded regions represent the
99% confidence interval, averaged over 40 runs.

2000 4000 6000 8000 10000

Number of vertices (n)

0

2

4

6

8

10

Ti
m

e
ta

ke
n

(m
in

)

SISLearn (Alg. 1)

Figure 9: Running time (in minutes) of the SISLearn algorithm on connected ER graphs, plotted against the number of
vertices. Shaded regions denote the 99% confidence interval, averaged over 10 runs.

Large Treewidth. We also conduct additional experiments on large graphs with treewidth 10, for which we only run our
DP algorithm, as the exhaustive search algorithm is computationally infeasible. We generate graphs with n ∈ {20, . . . , 2000}
vertices and set the budget K = 0.2n. For each n, we generate 40 random graphs and report the average running time.

Results. In Figure 10, we compare the average running times of DP and the exhaustive search algorithm across the small
and unbounded treewidth settings. As shown, DP is orders of magnitude faster than exhaustive search for n ≥ 20. In the
small treewidth setting (Figure 10a), the exhaustive search time grows exponentially with n, while DP exhibits polynomial
growth, consistent with the theoretical guarantee in Theorem 4.2. In the unbounded treewidth setting (Figure 10b), DP
also incurs exponential time, which is to be expected for the NP-hard SRM problem, but remains substantially faster than
exhaustive search.

17

Structure Learning and Vaccination for Epidemic Control

20 40 60 80 100

Number of vertices (n)

10−3

10−2

10−1

100

101

Ti
m

e
ta

ke
n

(m
in

)

Naive
DP (Alg. 2)

(a) Graphs with treewidth 3

20 40 60 80

Number of vertices (n)

10−3

10−2

10−1

100

101

102

Ti
m

e
ta

ke
n

(m
in

)

Naive
DP (Alg. 2)

(b) ER graphs with p = 1.1 logn/n

Figure 10: Log running time (in minutes) of naive exhaustive search and our DP Algorithm 2 for solving the SRM problem
on threewidth-3 and connected ER graphs plotted against the number of vertices, n. Shaded regions denote the 99%
confidence interval, averaged over 40 runs.

Figure 11 shows the average running time of DP on graphs with treewidth 10. As shown, DP exhibits polynomial growth in
time complexity as n increases, demonstrating that it can handle graphs with n = 2000 vertices in about 20 minutes. This is
a significant improvement over the exhaustive search algorithm, which is simply infeasible for such large graphs.

A.9. Empirical Running Time of Greedy

Here, we empirically demonstrate that our Greedy Algorithm 4 is computationally efficient and can scale to large graphs.
We generate connected Erdős-Rényi (ER) graphs with n ∈ {20, . . . , 1000} vertices and edge probability p = 1.1 log n/n.
We set the budget K = 0.2n and run both our DP and Greedy algorithm to solve the SRM problem, measuring their
running time. For each n, we generate 40 random graphs and report the average running time.

Results. Figure 12 shows the average running times of DP and Greedy across different number of vertices. As shown,
Greedy is significantly faster than DP, with a polynomial growth in time complexity, while DP exhibits exponential growth.
More importantly, Greedy is able to scale to graphs with n = 1000 vertices, taking only ≈ 10 minutes to run.

B. Vaccination on Trees
In this section, we present a vaccination algorithm for trees that we prove to be optimal i.e., it reduces the spectral radius
the most for a given vaccination budget K. The algorithm is based on the observation that following the removal (i.e.,
vaccination) of any vertex of a tree, the resulting tree has at least one new connected component.

Algorithm Overview. Our algorithm, pseudocode given in Algorithm 5, employs a binary search strategy to identify the
smallest possible spectral radius λε achievable by removing at most K vertices from a tree T , up to a precision of ε > 0.

For each candidate value of λ during the binary search, we invoke a feasibility check algorithm, pseudocode given in
Algorithm 6, to determine whether there exists a set of at most K vertices whose removal ensures that the spectral radius of
the resulting forest (i.e., disjoint union of trees) does not exceed λ. Algorithm 6 operates as follows:

1. Depth-First Traversal: The algorithm picks an arbitrary root and recursively explores each subtree in post-order (i.e.,
children before parent).

2. Vertex Removal: If a subtree’s spectral radius exceeds λ, the root of that subtree is marked for removal (vaccination),
effectively splitting the tree into smaller components.

18

Structure Learning and Vaccination for Epidemic Control

0 500 1000 1500 2000

Number of vertices (n)

0

5

10

15

20

Ti
m

e
ta

ke
n

(m
in

)

DP (Alg. 2)

Figure 11: Running time (in minutes) of the DP algorithm
on random graphs with treewidth tw = 10, plotted against
the number of vertices. Shaded regions denote the 99%
confidence interval, averaged over 40 runs.

0 200 400 600 800 1000

Number of vertices (n)

10−3

10−2

10−1

100

101

Ti
m

e
ta

ke
n

(m
in

)

DP (Alg. 2)
Greedy (Alg. 4)

Figure 12: Log running time (in minutes) of the DP and
Greedy vaccination algorithms on connected ER graphs,
plotted against the number of vertices. Shaded regions
denote the 99% confidence interval, averaged over 40 runs.

Algorithm 5 Optimal vaccination for a tree

1: Input: Tree T = (V,E), budget K, precision ε > 0
2: Output: Set of vertices to vaccinate Rε
3: Initialize L← 0
4: Initialize high←

√
|V | − 1

5: Initialize Rε ← ∅
6: while high− low > ε do
7: mid← low+high

2
8: (feasible, R)← ALGORITHM 6(T , K, λ = mid)
9: if feasible then

10: high← mid
11: Rε ← R
12: else
13: low ← mid
14: end if
15: end while
16: Return Rε

3. Budget Verification: After the traversal, if the total number of removed vertices does not exceed K, the current λ is
considered feasible.

Using Algorithm 6, we can identify the smallest λε via a binary search procedure conducted within the interval [0,
√
n− 1],

leveraging the fact that the spectral radius of a tree is bounded by
√
n− 1 (Van Mieghem et al., 2011). The binary search

iteratively narrows the range of possible λ values by selecting a midpoint and using the feasibility check to determine if the
current λ is achievable within the vaccination budget. As the domain of λ is continuous, we stop the binary search when the
interval size is less than a predefined threshold ε.

Optimality Guarantee. Below, we formally state and prove the optimality of Algorithm 5.

Theorem B.1. Given a tree T and vaccination budgetK, let λ∗ = ρ(T [V \R∗]), whereR∗ is the solution to the optimization
problem given in Equation (1), and let λε = ρ(T [V \Rε]), where Rε is the output of Algorithm 5 with precision parameter
ε. Then, |λ∗ − λε| ≤ ε.

Proof. Proof follows from the correctness and completeness of Algorithm 6, as detailed in Appendix D.4.4.

19

Structure Learning and Vaccination for Epidemic Control

Algorithm 6 Feasibility checker for tree vaccination

1: Input: Tree T = (V,E), budget K, threshold λ
2: Output: Feasibility and set of vertices to remove R
3: Choose an arbitrary root vertex r ∈ V
4: Initialize R← ∅
5: DFS(T , r, None, λ, R)
6: if |R| ≤ k then
7: Return True, R
8: else
9: Return False, R

10: end if

1: function DFS(T , u, parent, λ, R)
2: S ← ∅
3: for v ∈ N (u) do
4: if v ̸= parent then
5: S ← S ∪ DFS(T , v, u, λ,R)
6: end if
7: end for
8: if ρ(T [S]) > λ then
9: R← R ∪ {u}

10: return ∅
11: else
12: return S
13: end if
14: end function

Computational Complexity. The worst-case complexity of the algorithm is O
(
n3 log(

√
n/ε)

)
. The complexity arises

from (i) the binary search, which has a complexity of O(log(√n/ε)); (ii) the post-order traversal of the tree, which has a
complexity ofO(n); and (iii) the spectral radius computation, which has a complexity ofO(n2) using the Lanczos algorithm
for sparse graphs with O(n) nonzero entries (Cullum & Donath, 1974).

C. Tree Decomposition
In this section, we provide a brief introduction to treewidth, tree decompositions, and nice tree decompositions. For more
details, we refer the reader to Cygan et al. (2015).

Tree decomposition. A tree decomposition of a graph G is a tree with bags of vertices as nodes that captures the
connectivity and structure of the graph. Below, we provide a formal definition of a tree decomposition.

Definition C.1. (Tree Decomposition from Cygan et al. (2015)). A tree decomposition of G is a pair T =
(
T , {Xt}t∈V (T)

)
,

where T is a tree whose every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the following three
conditions hold:

•
⋃
t∈V (T)Xt = V (G). In other words, every vertex of G is in at least one bag.

• For every u, v ∈ E(G), there exists a node t of T such that bag Xt contains both u and v.

• For every u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ Xt}, i.e., the set of nodes whose corresponding bags contain u,
induces a connected subtree of T .

The width of tree decomposition T equals maxt∈V (T) |Xt| − 1, that is, the maximum size of its bag minus 1. Notice that a
trivial tree decomposition is formed by a single node with the entire vertex set of the graph as its bag, resulting in a width of
n− 1.

20

Structure Learning and Vaccination for Epidemic Control

Treewidth. Then, the treewidth of an undirected graph G, denoted by tw(G), is the minimum width of any tree decomposi-
tion of G. Intuitively, the treewidth of an undirected graph G is a measure of its tree-likeness (treewidth of a tree is 1, hence
the minus 1 in the definition). It is a very important concept used in parametrized algorithms and complexity theory, where
many NP-hard problems, such as the Hamiltonian path problem, Steiner tree problem, and many others (Cygan et al., 2022),
become tractable on graphs of bounded treewidth.

For a general graph, an upper bound on the treewidth is the number of vertices. However, for many real-world graphs, the
treewidth is much smaller than that, making it a useful parameter for designing efficient algorithms.

Nice tree decomposition. A nice tree decomposition is a tree decomposition that is easy to write dynamic programming
algorithms on. It is formally defined below.

Definition C.2. (Nice tree decomposition from Cygan et al. (2015)). A rooted tree decomposition T =
(
T , {Xt}t∈V (T)

)
with root r ∈ T is nice if Xr = ∅ and every node of T is of one of the following four types:

• Leaf node: a node t that has no children and has Xt = ∅.

• Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪ {v} for some vertex v /∈ Xt′ ; we say that v is
introduced at t.

• Forget node: a node t with exactly one child t′ such that Xt = Xt′\{w} for some vertex w ∈ Xt′; we say that w is
forgotten at t.

• Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

Working with nice tree decompositions simplifies the design of dynamic programming algorithms, due to limited types of
nodes. The following lemma shows that every tree decomposition can be converted to a nice tree decomposition without
increasing the width and in polynomial time.

Lemma C.1. (Lemma 7.4 of Cygan et al. (2015)). If a graph G admits a tree decomposition of width at most ω, then it also
admits a nice tree decomposition of width at most ω. Moreover, given a tree decomposition

(
T , {Xt}t∈V (T)

)
of G of width

at most ω, one can in time O
(
ω2 ·max(|V (T)|, |V (G)|)

)
compute a nice tree decomposition of G of width at most ω that

has at most O(ω|V (G)|) nodes.

D. Additional Proofs
D.1. Coupling between Processes {Y (t)} and {Ψ(t)}
The transition probabilites of {Y (t)}t∈TD

are governed by the infection and recovery probabilities as described in Section 2.
If the chain is in the all zero state, it will remain in that state forever; i.e., P(Y (t) = 0 | Y (t−1) = 0) = 1.

For the modified SIS process {Ψ(t)}t∈TD
, we define the transition probabilities as follows:

P(Ψ(t) = ψ′′ | Ψ(t−1) = ψ′) =

{
P(Y (t) = ψ′′ | Y (t−1) = ψ′), if ψ′ ̸= 0,

(pinit)
∥ψ′′∥(1− pinit)

n−∥ψ′′∥ otherwise,

where ∥ψ∥ = ∑n
i=1 ψi denote the number of 1-elements in a n-dimensional vector ψ ∈ {0, 1}n.

Clearly, the processes {Y (t)}t∈TD
and {Ψ(t)}t∈TD

can be coupled until the first time t0 when Y (t0) = Ψ(t0) = 0, at which
point process Y goes extict and process Ψ restarts.

D.2. Concentration Inequality

Here we state the concentration inequality for the modified SIS Markov chain {Ψ(t)} that we use to provide error bounds on
the learning algorithm.

21

Structure Learning and Vaccination for Epidemic Control

Lemma D.1. Let {Ψ(t)}t∈TD
be observations from the SIS process, where TD is a set of (not necessarily consecutive) time

indices and Ψ(t) ∈ {0, 1}V . Under Assumption 3.1, for any subset U ⊆ V , any state ψU ∈ {0, 1}|U |, and any ε, δ > 0, the
following deviation bound holds for the unbiased estimator:

P
(∣∣∣P(ΨU = ψU)− P̂(ΨU = ψU)

∣∣∣ ≥ ε) ≤ δ,
whenever |TD| ≥ 2 log(2/δ)

ε2(1−θ)2 , where 0 < θ < 1 is a constant depending on the graph structure but independent of T .

Here, P(ΨU = ψU) denotes the true probability (e.g., under the stationary distribution), and P̂(ΨU = ψU) = φU is the
empirical estimate over T = |TD| samples.

Proof. Let S = {0, 1}V be the state space of Markov chain {Ψ(t)} with transition probability p(ψ′′|ψ′) from state ψ′ ∈ S
to state ψ′′ ∈ S. Let T = |TD| be the number of observations and let ST be the product state space of these T observations.
By definition, the process {Ψ(t)}t∈N has the Markov property in time, hence so does a sub-sequence {Ψ(t)}t∈TD

. We
further define φU : ST → R as

φU (Ψ
(1), . . . ,Ψ(T)) =

1

T

T∑
t=1

1{Ψ(t)
U = ψU}.

Notice that the function above is c-Lipschitz with respect to the Hamming metric d(U,W) =
∑T
t=1 1{U (t) ̸= W (t)} on

ST , with Lipschitz constant c = 1/T .

We are now ready to apply Theorem 1.2 from Kontorovich & Ramanan (2008) for Markov chains. The theorem states that
for a c-Lipschitz function φ on Sn,

P{|φ− E [φ] | ≥ t} ≤ 2 exp

(
− t2

2nc2M2
n

)
.

In our case, the sequence length is T (replacing n in the theorem) and c = 1/T . The relevant Mn term becomes MT . The
bound becomes

P{|φU − E [φU] | ≥ t} ≤ 2 exp

(
− t2

2T (1/T)2M2
T

)
= 2 exp

(
− Tt2

2M2
T

)
,

where MT = (1− θT)/(1− θ) and θ is the Markov contraction coefficient given by

θ = sup
ψ′,ψ′′∈S

∥p (· | ψ′)− p (· | ψ′′)∥TV .

We have θ < 1 because every configuration ψ can transfer into the all-zero configuration 0. Hence, for any two states
ψ′, ψ′′ ∈ S both p(0|ψ′) > 0 and p(0|ψ′′) > 0 and the support of p(·|ψ′) and p(·|ψ′′) is not disjoint, which implies θ < 1.

We write MT ≤ 1/(1− θ) and the probability bound becomes

P{|φU − E [φU] | ≥ t} ≤ 2 exp

(
−Tt

2(1− θ)2
2

)
.

To ensure this probability is at most δ for a deviation t = ε, we get

2 exp

(
−Tε

2(1− θ)2
2

)
≤ δ

Finally, solving for T yields the desired condition

T ≥ 2 log(2/δ)

ε2(1− θ)2 .

22

Structure Learning and Vaccination for Epidemic Control

D.3. Learning Results

Note that Lemma 3.1, 3.2, and 3.3 hold for both the original process {Y (t)} and the modified process {Ψ(t)}, as they depend
only on the transition probabilities outside the all-zero (extinction) state.

Lemma 3.1. If i, j ∈ V are neighbors, then
µ
(t)
j|i ≥ pinf ∀t ∈ [T].

Proof. Consider an SIS process
(
Y (t)

)
t∈N at an arbitrary time t with infection probability pinf and let i, j ∈ V be

neighboring vertices. Let ∥y∥ =
∑|N (j)|−1
i=1 yi denote the number of 1-elements in a (|N (j)| − 1)-dimensional vector

y ∈ {0, 1}|N (j)|−1. Then

µ
(t)
j|i = P

(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
i = 1

)
(a)
=

∑
y∈{0,1}|N(j)|−1

P
(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
i = 1, Y

(t)
N (j)\{i} = y

)
· P

(
Y

(t)
N (j)\{i} = y|Y (t)

j = 0, Y
(t)
i = 1

)
(b)
=

∑
y∈{0,1}|N(j)|−1

(
1− (1− pinf)

∥y∥+1
)
· P

(
Y

(t)
N (j)\{i} = y|Y (t)

j = 0, Y
(t)
i = 1

) (c)

≥ pinf

where (a) is obtained by the law of total probability and (b) by the definition of the SIS process. If the whole neighborhood
of j and the state of j is known at time t, the transition probability of Y (t)

j from state zero at time t to state one at t+ 1,

is given by 1− (1− pinf)
∥y∥+1. That is, we know Y

(t)
j = 0, Y (t)

i = 1 and Y (t)
N (j)\{i} = y. Hence, the number of infected

vertices ∥y∥ and i contribute to the probability of vertex j being infected in the next round. Finally, (c) is obtained by lower
bounding 1− (1− pinf)

∥y∥+1 ≥ pinf and by normalization:∑
y∈{0,1}|N(j)|−1

P
(
Y

(t)
N (j)\{i} = y|Y (t)

j = 0, Y
(t)
i = 1

)
= 1.

Lemma 3.2. Let j, k ∈ V be non-neighbors and let S ⊆ V \ {j, k} be a superset of neighbors of j, i.e., N (j) ⊆ S. Then

ν
(t)
j|k,yS = 0 ∀t ∈ [T], yS ∈ {0, 1}|S|.

Proof. Consider an arbitrary time t, vertices j, k ∈ V , j and k non-neighbors, S ⊆ V \ {j, k} such that N (j) ⊆ S and
a vector yS ∈ {0, 1}|S|. We note that S separates j and k, i.e., any path between j and k passes through set S. Then by
the local Markov property of the model (the probability of a vertex j transitioning from the zero state to the one state only
depends on the state of j and its neighbors in the previous round) the evolution of j is conditionally independent of k and
we write explicitly:

νtj|k,yS = P
(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
k = 1, Y

(t)
S = yS

)
− P

(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
k = 0, Y

(t)
S = yS

)
= P

(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
N (j) = yN (j), Y

(t)
k = 1, Y

(t)
S\N (j) = yS\N (j)

)
− P

(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
N (j) = yN (j), Y

(t)
k = 0, Y

(t)
S\N (j) = yS\N (j)

)
= P

(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
N (j) = yN (j)

)
− P

(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
N (j) = yN (j)

)
(2)

= 0,

where (2) follows from the aforementioned Markov property.

Lemma 3.3. Let i, j ∈ V be neighbors and let S ⊆ V \ {j} be a superset of neighbors of j, i.e., N (j) ⊆ S. Then, for any
yS\{i} ∈ {0, 1}|S|−1, t ∈ [T]

ν
(t)
j|i,yS\{i}

≥ pinf(1− pinf)
∆−1.

23

Structure Learning and Vaccination for Epidemic Control

Proof of Lemma 3.3. Consider an SIS process
(
Y (t)

)
t∈[T]

with infection probability pinf and maximum degree of the

underlying graph ∆, let i, j ∈ V be neighboring vertices, S ⊆ V \{j} be a set such that S ⊇ N (j) and yS\{i} ∈ {0, 1}|S|−1

an arbitrary vector of infection states on set S \ {i}. The conditional influence of i on j given S is defined as:

νtj|i,yS\{i}
= P

(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
i = 1, Y

(t)
S\{i} = yS\{i}

)
−P

(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
i = 0, Y

(t)
S\{i} = yS\{i}

)
.

As we assume N (j) ⊆ S and by the local Markov property of the process, yS\{i} and the state information on Y (t)
i contain

all information for the transition probability of vertex j from the zero state to the one state. Therefore we write:

νtj|i,yS\{i}
= P

(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
i = 1, Y

(t)
N (j)\{i} = yN (j)\{i}

)
− P

(
Y

(t+1)
j = 1|Y (t)

j = 0, Y
(t)
i = 0, Y

(t)
N (j)\{i} = yN (j)\{i}

)
=

(
1− (1− pinf)

∥yN(j)\{i}∥+1
)
−
(
1− (1− pinf)

∥yN(j)\{i}∥
)

= (1− pinf)
∥yN(j)\{i}∥(1− (1− pinf))

≥ pinf (1− pinf)
∆−1

.

where we used the definition of the infection probability and the fact that the degree of a vertex is upper bounded by ∆.

For the following lemmas, we consider the modified SIS process Ψ(t) described in Appendix D.1 and data collected from its
stationary distribution.

Lemma D.2. Under Assumption 3.1, let i ̸= j ∈ V with m = I(Ψj = 0,Ψi = 1). If m ≥ 2 log(2/δ)/(ε2(1− θ)2) and
δ, ε > 0, then

P
(∣∣µj|i − µ̂j|i∣∣ ≥ ε) ≤ δ.

Proof. Let i ̸= j ∈ V , δ, ε > 0, under Assumption 3.1 let m = I(Ψj = 0,Ψi = 1) with m ≥ 2 log(2/δ)/(ε2(1 − θ)2).
We will use Lemma D.1. First, we set

I(Ψj = 0,Ψi = 1) =
{
t ∈ TD : Ψ

(t)
j = 0,Ψ

(t)
i = 1

}
.

We construct a subsequence of the Markov chain
{
Ψ(t)

}
t∈[T]

, which consists of all the time indices directly after an event in

I:
{
Ψ(r+1) : r ∈ I(Ψj = 0,Ψi = 0)

}
. Notice that Lemma D.1 also holds for this Markov chain, since it is itself a Markov

chain. Let Sm =
∑

r∈I(Ψj=0,Ψi=1)

1{Ψ(r+1)
j = 1} count the occurrence of Ψ(r+1)

j = 1 following a time index satisfying

Ψ
(t)
j = 0 and Ψ

(t)
i = 1. Then, the expectation of this estimator is given by:

E [Sm] = E

 ∑
r∈I(Ψj=0,Ψi=1)

1{Ψ(r+1)
j = 1}

 (∗)
= mP

(
Ψ

(r+1)
j = 1|Ψ(t)

j = 0,Ψ
(t)
i = 1

)
,

where (∗) holds because the expectation is taken over the random variable 1{Ψ(r+1)
j = 1} conditioned on the

event I(Ψj = 0,Ψi = 1) holding in the previous time step. Hence Sm/m can serve as an estimator for

P
(
Ψ

(r+1)
j = 1|Ψ(t)

j = 0,Ψ
(t)
i = 1

)
. Applying Lemma D.1, we obtain that:

P
(∣∣∣P(

Ψ
(·+1)
j = 1|Ψ(·)

j = 0,Ψ
(·)
i = 1

)
− P̂

(
Ψ

(·+1)
j = 1|Ψ(·)

j = 0,Ψ
(·)
i = 1

)∣∣∣ ≥ ε)
= P

(∣∣∣∣ 1mE [Sm]− 1

m
Sm

∣∣∣∣ ≥ ε) ≤ δ.

24

Structure Learning and Vaccination for Epidemic Control

Lemma D.3. Under Assumption 3.1, let i ̸= j ∈ V , S ⊆ V \{i, j}, δ, ε > 0, ψS ∈ {0, 1}|S|,m+ = I(Ψj = 0,Ψi = 1, ψS),
and m− = I(Ψj = 0,Ψi = 0, ψS). If min{m+,m−} ≥ 2

ε2(1−θ)2 log(2/δ), then

P
(∣∣νj|i,ψS

− ν̂j|i,ψS

∣∣ ≥ 2ε
)
≤ 2δ

Proof. We will once again use Lemma D.1. Under Assumption 3.1 let i ̸= j ∈ V , S ⊆ V \ {i, j}, δ, ε > 0, ψS ∈ {0, 1}|S|,
m+ = I(Ψj = 0,Ψi = 1, ψS), m− = I(Ψj = 0,Ψi = 0, ψS), and min{m+,m−} ≥ 2

ε2(1−θ)2 log(2/δ). We define

φ+ := P
(
Ψ

(·+1)
j = 1|Ψ(·)

j = 0,Ψ
(·)
i = 1,Ψ

(·)
S = ψS

)
and φ− := P

(
Ψ

(·+1)
j = 1|Ψ(·)

j = 0,Ψ
(·)
i = 0,Ψ

(·)
S = ψS

)
.

Then, let φ̂+ and φ̂− be their estimators, respectively. That is,

φ̂+ := P̂
(
Ψ

(·+1)
j = 1|Ψ(·)

j = 0,Ψ
(·)
i = 1,Ψ

(·)
S = ψS

)
,

φ̂− := P̂
(
Ψ

(·+1)
j = 1|Ψ(·)

j = 0,Ψ
(·)
i = 0,Ψ

(·)
S = ψS

)
.

Then, define S+
m and S−

m as

S+
m =

∑
r∈I(Ψj=0,Ψi=1,ψS)

1{Ψ(r+1)
j = 1},

S−
m =

∑
r∈I(Ψj=0,Ψi=0,ψS)

1{Ψ(r+1)
j = 1}.

The expectation of the estimators is given by:

E
[
S+
m

]
= m+φ+ and E

[
S−
m

]
= m−φ−.

By application of Lemma D.1:
P
(∣∣φ+ − φ̂+

∣∣ ≥ ε) ≤ δ. (3)

Similarly,
P
(∣∣φ− − φ̂−∣∣ ≥ ε) ≤ δ. (4)

Now, writing νj|i,ψS
and ν̂j|i,ψS

using φ+ and φ−, the triangle inequality implies that∣∣νj|i,ψS
− ν̂j|i,ψS

∣∣ = ∣∣φ+ − φ− − (φ̂+ − φ̂−)
∣∣

≤
∣∣φ+ − φ̂+

∣∣+ ∣∣φ̂− − φ−∣∣ .
Combining the above,

P
(∣∣νj|i,ψS

− ν̂j|i,ψS

∣∣ < 2ε
)

≥ P
(∣∣φ+ − φ̂+

∣∣+ ∣∣φ̂− − φ−∣∣ < 2ε
)

≥ P
(
{
∣∣φ+ − φ̂+

∣∣ < ε} ∩ {
∣∣φ̂− − φ−∣∣ < ε}

)
(5)

≥ 1− P
(
{
∣∣φ+ − φ̂+

∣∣ ≥ ε})− P
(
{
∣∣φ̂− − φ−∣∣ ≥ ε}) (6)

≥ 1− 2δ, (7)

where in (5) we have used the intersection of events property, in (6) we have used the union bound, and in (7) we have used
(3) and (4).

Finally, taking the complement, we get P
(∣∣νj|i,ψS

− ν̂j|i,ψS

∣∣ ≥ 2ε
)
≤ 2δ as desired.

25

Structure Learning and Vaccination for Epidemic Control

Lemmas D.2 and D.3 establish concentration for individual estimators µ̂j|i and ν̂j|i,ψS
(for a specific configuration ψS). For

our learning algorithm SISLearn (Algorithm 1) to succeed, we need these estimates to be accurate simultaneously across
all relevant i, j, S, and respective configurations ψ∗

S . We thus define the event A(εν , εµ) that captures this joint accuracy:

A(εν , εµ) =
{(
∀i ̸= j ∈ V : |µj|i − µ̂j|i| ≤ εµ

)
and

(
∀i ̸= j ∈ V,∀S ⊆ V \ {i, j} s.t. for each respective ψ∗

S : |νj|i,ψ∗
S
− ν̂j|i,ψ∗

S
| ≤ εν

)}
,

where, as a reminder, ψ∗
S(i, j), or ψ∗

S when clear from context, is defined as

ψ∗
S(i, j) := argmax

ψ∈{0,1}|S|−1

min
(
I(Ψ

(t)
j = 0,Ψ

(t)
i = 1,Ψ

(t)
S\{i} = ψ), I(Ψ

(t)
j = 0,Ψ

(t)
i = 0,Ψ

(t)
S\{i} = ψ)

)
.

The following lemma provides the sample complexity conditions under which this joint eventA holds with given probability.
Lemma D.4. Under Assumption 3.1, if for every i ̸= j ∈ V , every S ⊆ V \ {i, j}, and every configuration ψi, ψj ∈ {0, 1},
the number of observations I(Ψi = ψi,Ψj = ψj ,ΨS = ψ∗

S(i, j)) is at least mmin, where

mmin =
2

(1− θ)2(min{εν/2, εµ})2
log

(
2n2(1 + 2n−1)

ζ

)
,

then P(A(εν , εµ)) ≥ 1− ζ.

Proof. Under Assumption 3.1, assume that for all i ̸= j ∈ V, S ⊆ V \ {i, j}, ψi, ψj ∈ {0, 1}, and the respective ψ∗
S(i, j),

I(Ψi = ψi,Ψj = ψj ,ΨS = ψ∗
S(i, j)) ≥ 2

(1−θ)2(min{ εν
2 ,εµ})2

log
(

2n2(1+2n−1)
ζ

)
. Then, we write using a union bound

P (A(εν , εµ))
= 1− P

(
∃{i, j} ⊂ V, S ⊂ V \ {i, j} such that for ψ∗

S , |νj|i,ψ∗
S
− ν̂j|i,ψ∗

S
| > εν or |µj|i − µ̂j|i| > εµ

)

≥ 1− P

 ⋃
i,j∈V

S⊆V \{i,j}

{
|νj|i,ψ∗

S
− ν̂j|i,ψ∗

S
| > εν

}
∪

⋃
i,j∈V

{
|µj|i − µ̂j|i| > εµ

}
≥ 1−

∑
i,j∈V

S⊆V \{i,j}

P
(
|νj|i,ψ∗

S
− ν̂j|i,ψ∗

S
| > εν

)
−

∑
i,j∈V

P
(
|µj|i − µ̂j|i| > εµ

)
.

The number of pairs (i, j) in V can be upper bounded by n2 while the number all conditioning sets S ⊆ V \ {i, j} is
equal to

∑n−2
k=1

(
n−2
k

)
≤ 2n−2. Let m = mini,j∈V,S⊆V \{i,j}{I(Ψi = ψi,Ψj = ψj ,ΨS = ψ∗

S)}. We obtain therefore from
Lemma D.2 and Lemma D.3 that for m ≥ 2 log(2/δ)/((1− θ)2(min{εν/2, εµ})2)

P (A(εν , εµ)) ≥ 1− n22n−2(2δ)− n2δ.

Now, since we assumed m satisfies m ≥ 2
(1−θ)2(min{ εν

2 ,εµ})2
log

(
2n2(1+2n−1)

ζ

)
, we can substitute ζ = δn2(1 + 2n−1),

yielding P (A(εν , εµ)) ≥ 1− ζ.

Theorem 3.1. (Learning Guarantee.) Let εµ, εν , ζ be positive constants, with εν < pinf(1 − pinf)
∆−1/2 and ζ ≤ 1.

Suppose Assumption 3.1 holds. Further, assume that for all i ̸= j ∈ V , all S ⊆ V \ {i, j}, and all ψi, ψj ∈ {0, 1}, and the
respective ψ∗

S(i, j), the following inequality holds:

I(Ψi = ψi,Ψj = ψj ,ΨS = ψ∗
S(i, j)) ≥

2

(1− θ)2(min{εν/2, εµ})2
log

(
2n2(1 + 2n−1)

ζ

)

26

Structure Learning and Vaccination for Epidemic Control

Then, with probability at least 1− ζ , Algorithm 1, when run with thresholds κν = εν and κµ = εµ, returns the correct edge
set of the underlying graph: ED = E.

Proof. Assume that for all i ̸= j ∈ V, S ⊆ V \ {i, j}, ψi, ψj ∈ {0, 1}, and each respective ψ∗
S(i, j) and under Assump-

tion 3.1,

I
(
Ψi = ψi, Ψj = ψj , ΨS = ψ∗

S

)
≥ 2

(1− θ)2(min{εν/2, εµ})2
log

(
2n2(1 + 2n−1)

ζ

)
and εν < pinf(1− pinf)

∆−1/2. Then, by Lemma D.4, P (A(εν , εµ)) ≥ 1− ζ . For the remainder of the proof we will assume
that A(εν , εµ) holds.

We will show that the algorithm learns the neighborhoods of all vertices correctly one after the other. As the outer for-loop
(Line 4–17) iterates over all vertices in V , it suffices to show that the algorithm correctly learns the neighborhood of
an arbitrary vertex j ∈ V . To do so, we will show that after the inclusion for-loop (Line 6–10), S is a superset of the
neighborhood of j, and that in the exclusion for-loop (Line 11–15), all neighbors remain in S while all non-neighbors get
removed.

Inclusion Loop. By Lemma 3.1, if i is a neighbor of j, then µj|i ≥ pinf. Hence, conditioned on A being true,∣∣µ̂j|i − µj|i∣∣ ≤ εµ, and µ̂j|i ≥ pinf − εµ. Therefore, after the inclusion loop, the set S contains at least all neighbors of j,
i.e., S ⊇ N (j).

Exclusion Loop. We first establish that no neighboring vertex of j can be removed from S in the exclusion for-loop and
next show that all non-neighboring vertices of j are removed from S.

Suppose, for the sake of contradiction, that at least one neighboring vertex of j is removed in the exclusion for-loop, say i.
As shown earlier, S ⊇ N (j), hence the conditions for Corollary 3.1 are satisfied. As we have also conditioned onA(εν , εµ),
Corollary 3.1, which holds for any ψS , yields

ν̂j|i,ψ∗
S\{i}

≥ pinf(1− pinf)
∆−1 − εν .

This inequality contradicts the exclusion criterion in Line 12 and thus i cannot be removed from S. Hence, no neighboring
vertex can be removed by the exclusion loop.

Finally, we know by Lemma 3.2 and A(εν , εµ) that if i /∈ N (j), then

ν̂j|i,ψ∗
S\{i}

≤ εν .

We have assumed that εν < pinf(1− pinf)
∆−1/2. Hence,

ν̂j|i,ψ∗
S\{i}

≤ pinf(1− pinf)
∆−1 − εν ,

and so any non-neighboring vertex gets removed.

Thus, after the exclusion for-loop, we have S = N (j) and the algorithm correctly learns the neighborhood of j. Since the
outer for-loop iterates over all vertices in V , conditioned on A, which occurs with probability at least 1− ζ, the algorithm
learns the neighborhood of every vertex in V correctly.

D.4. Vaccination Results

D.4.1. EXTINCTION TIME OF DISCRETE SIS PROCESS

In this section, we state and prove results relating the extinction time of a discrete SIS process to the spectral radius of the
underlying graph. This result was first empirically established by Wang et al. (2003), and formally stated and proven for the
discrete-time SIS model as defined in Section 2 by Ruhi et al. (2016).

Lemma D.5. Given a discrete SIS model with initial infection probability pinit, infection probability pinf, recovery probability
prec, and spreading on graph G with n vertices and adjacency matrix A, we have that the expected number of infected
vertices at time t, denoted by E[Zt], is upper bounded by pinit (1− prec + pinfρ(A))

t
n.

27

Structure Learning and Vaccination for Epidemic Control

Proof. Denoting the infection probability of vertex i at time t+ 1 by p(t+1)
i := P

(
Y

(t+1)
i = 1

)
, we have

p
(t+1)
i = (1− prec) · p(t)i + E{Yj}j∈N(i)

1− ∏
j∈N (i)

(
1− pinf · Y (t)

j

) · (1− p(t)i)
, (8)

where the first term of the sum is the probability of staying infected, and the second term is the probability of getting infected.
We can then bound the product term by using the union bound to get

E

1− ∏
j∈N (i)

(
1− pinf · Y (t)

j

) ≤ E

 ∑
j∈N (i)

pinf · Y (t)
j


=

∑
j∈N (i)

pinf · E
[
Y

(t)
j

]
=

∑
j∈N (i)

pinf · p(t)j .

Substituting this into Equation (8), we get

p
(t+1)
i ≤ (1− prec) · p(t)i + pinf ·

∑
j∈N (i)

p
(t)
j · (1− p

(t)
i).

Since 0 ≤ (1− p(t)i) ≤ 1, we further bound the expression by:

p
(t+1)
i ≤ (1− prec) · p(t)i + pinf ·

∑
j∈N (i)

p
(t)
j .

Now, let pt = [pt1, p
t
2, . . . , p

t
n]

⊤ represent the vector of infection probabilities at time t. The above inequality can be written
in matrix form as

pt+1 ≤ (1− prec) · pt + pinf ·Apt

= [(1− prec)I+ pinfA]pt

= Mpt,

where I is the n× n identity matrix and M = (1− prec)I + pinfA is the transition matrix. Then, by recursively applying
the inequality, we obtain

pt ≤Mtp0,

where p0 is the initial infection probability vector, given by p0 = [pinit, pinit, . . . , pinit]
⊤. The spectral radius of matrix M,

denoted by ρ(M), is given by:
ρ(M) = (1− prec) + pinfρ(A),

where ρ(A) is the spectral radius of the adjacency matrix A. Now, we can write the expected number of infected vertices at
time t as

E[Zt] =
n∑
i=1

E[Y ti]

=

n∑
i=1

p
(t)
i

= ∥pt∥1
≤ √n∥pt∥2,

28

Structure Learning and Vaccination for Epidemic Control

where the last inequality follows from the Cauchy-Schwarz inequality. Substituting the bound on pt into the above
expression, we obtain

E[Zt] ≤ √n∥Mtp0∥2
≤ √nρ(M)t∥p0∥2,

where the last inequality follows from M being a symmetric matrix. Simplifying further and substituting in the value of
ρ(M), we obtain E[Zt] ≤ (1− prec + pinfρ(A))

t
npinit, as desired.

Theorem 4.1. The expected extinction time E[τ] is upper bounded by O(log n) if ρ(G) < prec/pinf.

Proof. We first define t′ := arg inft{E[Zt] ≤ 1/n} as the first round t such that E[Zt] ≤ 1/n. Then, using the upper
bound from Lemma D.5, and assuming that ρ(A) < prec/pinf, we have that if t′ = ⌈− log(pinitn

2)/ log(ρ(M))⌉, then
E[Zt′] ≤ ρ(M)t

′
npinit ≤ 1/n. Then, we can write the expected extinction time as

E[τ] = E

[∞∑
t=1

1
{
Zt ≥ 1

}]

=

∞∑
t=1

P
(
Zt ≥ 1

)
=

t′∑
t=1

P
(
Zt ≥ 1

)
+

∞∑
t=t′+1

P
(
Zt ≥ 1

)
≤ t′ +

∞∑
t=t′+1

P
(
Zt ≥ 1

)
.

Now, we will show that the second term in the above expression goes to zero asymptotically and we will be done. To do so,
we will apply Markov’s inequality and Lemma D.5 to obtain

∞∑
t=t′+1

P
(
Zt ≥ 1

)
≤

∞∑
t=t′+1

E[Zt]

≤
∞∑

t=t′+1

pinitρ(M)tn.

Using the definition of t′, we have that
∞∑

t=t′+1

P
(
Zt ≥ 1

)
≤

∞∑
k=1

pinitρ(M)t
′+kn

=

∞∑
k=1

(
pinitρ(M)t

′
n
)
ρ(M)k

≤ 1

n

∞∑
k=1

ρ(M)k

=
1

n

ρ(M)

1− ρ(M)
,

where in the last line we have used the fact that |ρ(M)| < 1. Finally, we have that the expected extinction time is upper
bounded by

E[τ] ≤
⌈
− log(pinitn

2)

log(ρ(M))

⌉
+

1

n

ρ(M)

1− ρ(M)

∽ O(log n).

29

Structure Learning and Vaccination for Epidemic Control

D.4.2. OPTIMALITY OF ALGORITHM 2

Here, we state and prove the optimality of Algorithm 2.

Theorem D.1. Given a graph G and vaccination budget K, let λ∗ = ρ(G[V \ R∗]), where R∗ is the solution to the
optimization problem given in Equation (1), and let λε = ρ(G[V \Rε]), where Rε is the output of Algorithm 2 with precision
parameter ε. Then, |λ∗ − λε| ≤ ε.

Proof. Proof follows from the correctness and completeness of Algorithm 3, stated and proven below.

Throughout the rest of the subsection, let G be an undirected graph with nice tree decomposition T =
(
T , {Xt}t∈V (T)

)
,

K ∈ Z+ the vaccination budget, and λ ∈ R+ the desired spectral radius threshold. Assume that Algorithm 3 is run with
input G, T , K, and λ.

Claim D.1 (Correctness of Algorithm 3). If Algorithm 3 returns True and identifies a set R of vertices to vaccinate, then
|R| ≤ K and ρ(G[V \R]) ≤ λ.

Proof. Assume that Algorithm 3 returns True with a set R. We will prove the correctness of the algorithm by proving the
correctness of DP[t, S, c] for each node type using induction i.e., we will prove that if DP[t, S, c] ̸= ∅, then allR ∈ DP[t, S, c]
satisfy simultaneously (i) |R| = c, (ii) S ∩R = ∅ and (iii) ρ(G[Vt \R]) ≤ λ.

For the base case, notice that DP[t, S, c] = ∅ for all t ∈ V (T), S ⊆ Xt, and 0 ≤ c ≤ K, so the hypothesis is trivially
satisfied. Then, for the induction step, notice that the algorithm iterates through the tree’s nodes in a post-order and
visits children before the parent. Thus, for each node t, we assume the correctness of its children’s DP values (induction
hypothesis). We will now prove the correctness of the node t, based on its type.

Leaf node. For a leaf node t, note that Vt = ∅, and the algorithm sets the only R in DP[t, ∅, 0] as ∅, which trivially satisfies
(i), (ii), and (iii).

Introduce node. For an introduce node t with child node t′, we have Xt = Xt′ ∪{v} for some v ∈ V (G). For all S ⊆ Xt

and 0 ≤ c ≤ K,

• If v ̸∈ S, then the algorithm sets DP[t, S, c] = {R′ ∪ {v} : R′ ∈ DP[t′, S, c − 1]}. Thus, for any R′ ∪ {v} = R ∈
DP[t, S, c], we have |R| = |R′|+ 1 = c and S ∩R = (S ∩R′) ∪ (S ∩ {v}) = ∅, so (i) and (ii) are satisfied. For (iii),
notice that Vt \ {v} = Vt′ , so ρ(G[Vt \R]) = ρ(G[Vt′ \R′]) ≤ λ by the induction hypothesis.

• If v ∈ S, then the algorithm sets DP[t, S, c] = {R′ ∈ DP[t′, S \ {v}, c] : ρ(G[Vt \ R′]) ≤ λ}. Therefore, (iii) is
satisfied by definition, and (i) and (ii) are satisfied by the induction hypothesis (|R′| = c and S ∩R′ = ∅).

Forget node. For a forget node t with child node t′, we have Xt = Xt′ \ {w} for some w ∈ V (G). Thus, Vt = Vt′ . For
all S ⊆ Xt and 0 ≤ c ≤ K, the algorithm sets DP[t, S, c] = DP[t′, S, c] ∪ DP[t′, S ∪ {w}, c]. Let R ∈ DP[t, S, c].

• If R ∈ DP[t′, S, c], then |R| = c, S ∩R = ∅, and ρ(G[Vt \R]) = ρ(G[Vt′ \R]) ≤ λ by the induction hypothesis.

• If R ∈ DP[t′, S ∪ {w}, c], then |R| = c and ρ(G[Vt \R]) ≤ λ by the induction hypothesis, so (i) and (iii) are satisfied.
For (ii), notice that (S ∪ {w}) ∩R = ∅, by the induction hypothesis, implying S ∩R = ∅.

Join node. For a join node t with child nodes t1 and t2, we have Xt = Xt1 = Xt2 . For all S ⊆ Xt and 0 ≤ c ≤ K, the
algorithm sets

DP[t, S, c] ={
R1 ∪R2

∣∣∣∣ 0 ≤ c1, c2 ≤ K, R1 ∈ DP[t1, S, c1], R2 ∈ DP[t2, S, c2], |R1 ∪R2| = c, ρ(G[Vt \ (R1 ∪R2)]) ≤ λ
}
.

Conditions (i) and (iii) are satisfied by definition. Condition (ii) is also satisfied as S ∩R1 = S ∩R2 = ∅ by the induction
hypothesis.

30

Structure Learning and Vaccination for Epidemic Control

We have shown that assuming the correctness a node t’s children’s DP values, the correctness of t’s DP values follows. This,
combined with the base case, establishes the correctness of the algorithm through induction.

Claim D.2 (Completeness of Algorithm 3). If there exists a set R′ ⊆ V (G) with |R′| ≤ K such that ρ(G[V (G) \R′]) ≤ λ,
then Algorithm 3 will return True along with a set R ⊆ V with |R| ≤ K such that ρ(G[V (G) \R]) ≤ λ.

Proof. Let R ⊆ V (G) be any set of vertices with |R| ≤ K for which ρ
(
G[V (G) \ R]

)
≤ λ. We show by (bottom-up)

induction on the nodes of the tree decomposition T that R is recorded in the table DP[·, ·, ·]. In particular, we will prove
that for every node t ∈ V (T),

Rt := R ∩ Vt belongs to DP
[
t, Xt ∩ (V (G) \R), |Rt|

]
.

Since Xt ∩ R = ∅ is equivalent to Xt ∩ (V (G) \ R) = Xt, we define the ‘preserved set’ St := Xt \ R so that Rt never
intersects St. As before, Vt denotes the union of all bags in the subtree of T rooted at t.

Base Case (Leaf node). If t is a leaf node, then Xt = ∅ and Vt = ∅. Thus Rt = R ∩ ∅ = ∅. The algorithm sets
DP[t, ∅, 0] = {∅} (and DP[t, S, c] = ∅ otherwise). Clearly, Rt = ∅ is indeed recorded in DP[t, ∅, 0].

Induction Hypothesis. Assume that for every child t′ of t, Rt′ ∈ DP[t′, St′ , |Rt′ |] where St′ = Xt′ \R. We now prove
that Rt ∈ DP[t, St, |Rt|].

Introduce node. Suppose t is an introduce node with child t′, and let v be the vertex introduced at t, so Xt = Xt′ ∪ {v}.
There are two cases:

• Case 1: v ∈ R. Then Rt = Rt′ ∪ {v} and St = St′ (since v /∈ St). By induction, we know Rt′ ∈ DP[t′, St′ , |Rt′ |].
Because v ∈ Rt, the DP update rule places Rt into DP[t, St, |Rt|] as Rt′ ∪ {v}.

• Case 2: v /∈ R. Then Rt = Rt′ and St = St′ ∪ {v}. By induction, Rt′ ∈ DP[t′, St′ ∪ {v}, |Rt′ |]. The DP update
rule copies Rt′ directly into DP[t, St, |Rt|] (and also checks ρ(G[Vt \Rt]) ≤ λ, which holds by assumption).

Forget node. Suppose t is a forget node with child t′, and let w be the vertex forgotten at t, so Xt = Xt′ \ {w} and
Vt = Vt′ . We again have two cases:

• Case 1: w ∈ R. Then Rt = Rt′ and St = St′ \ {w}. By induction, Rt′ ∈ DP[t′, St′ , |Rt′ |]. The DP update rule
ensures Rt′ appears in DP[t, St, |Rt|].

• Case 2: w /∈ R. Then Rt = Rt′ and St = St′ . By induction, Rt′ ∈ DP[t′, St′ , |Rt′ |]. Again, Rt′ is copied into
DP[t, St, |Rt|].

Join node. Suppose t is a join node with two children t1 and t2, where Xt = Xt1 = Xt2 . Observe that Rt = Rt1 ∪Rt2
and St = St1 = St2 . By the induction hypothesis,

Rt1 ∈ DP[t1, St1 , |Rt1 |] and Rt2 ∈ DP[t2, St2 , |Rt2 |].
The join node’s DP rule unites these sets whenever they align on the same St and total size |Rt| = |Rt1 |+ |Rt2 | ≤ K. By
our feasibility assumption, ρ(G[Vt \ (Rt1 ∪Rt2)]) ≤ λ, so Rt is placed in DP[t, St, |Rt|].
We have shown that whenever the children of a node t have valid DP entries, the node t will also have a valid DP entry. Thus,
by induction, the solution R′ is recorded in the root node’s DP table, and the algorithm returns True. More specifically, at
the root node r we have R ∈ DP[r, ∅, c] for some 0 ≤ c ≤ K. Therefore, DP[r, ∅, c] ̸= ∅, which guarantees Algorithm 3
detects a feasible solution.

D.4.3. TIME COMPLEXITY OF ALGORITHM 2

Theorem 4.2. Given an input graph G with treewidth tw(G) ≤ ω, budget K, and precision ε, Algorithm 2 has a worst-case
time complexity of O

(
nO(1)KO(1)2O(ω) log(∆/ε)

)
.

Proof. The complexity arises from the binary search, building the DP table, node and spectral radius computation, each of
which we analyze below.

31

Structure Learning and Vaccination for Epidemic Control

Binary search. The binary search is done on [0,∆] and runs until high− low > ε, thus taking O(log(∆/ε)) time.

DP table. The DP table is indexed by t ∈ V (T), S ⊆ Xt, and c ∈ {0, 1, . . . ,K}. The number of nodes in the tree
decomposition is upper bounded by O(ωn) by Lemma C.1. Then, as size of each bag Xt is at most ω + 1 by the definition
of treewidth (see Appendix C), we have that the total number of subsets is upper bounded by O(2ω+1). Thus, the total
number of entries in the DP table is O(ωn2ω+1K).

Note that although the DP table is described in Section 4.2 as storing all feasible solutions per (t, S, c) triplet, this is not
necessary. We only need to retain a representative solution for each state, and in particular only before a join node is reached
in the post-order. In other words, once a join node has been processed, it suffices to only keep one solution per triplet. This
is how we avoid a

(
n
K

)
factor in the complexity. We still need to perform a search over K2 many c values at each node join

node, but this only adds a O(K2) factor to the complexity.

Spectral radius. The spectral radius computation complexity is at most O(n2) using the Lanczos algorithm for sparse
graphs with O(n) nonzero entries (Cullum & Donath, 1974).

Combining the above, we have that the total time complexity is O
(
n3K3ω2ω+1 log(∆/ε)

)
.

D.4.4. OPTIMALITY OF ALGORITHM 5

Here, we prove the optimality of Algorithm 5, which follows directly from the correctness and completeness of Algorithm 6,
proven below.

Throughout the rest of this subsection, let T = (V,E) be an undirected tree, K ∈ Z+ the vaccination budget, and λ ∈ R+

the desired spectral radius threshold. Assume that Algorithm 6 is run with input T ′, K, and λ. Without loss of generality,
order the vertices in the tree T by picking a random root and ordering the other vertices accordingly.

Lastly, define C(T) as the set of connected components of T , where T is a forest, and define a minimal offending subtree as
a connected subtree S ⊆ V where ρ(T [S]) > λ and for any proper connected subtree S′ ⊂ S, ρ(T [S′]) ≤ λ.

Claim D.3 (Correctness). If Algorithm 6 returns True and identifies a set R of vertices to remove, then |R| ≤ k and after
removing R from the tree T , ρ(T [V \R]) ≤ λ.

Proof. Assume that Algorithm 6 returns True with a set R. First, observe that |R| ≤ k, due to the if clause in line 6. Then,
notice that the algorithm performs a post-order depth-first traversal of the tree. At each vertex u, it attempts to merge all
child subtrees with u.

If the spectral radius ρ(T [S]) ≤ λ, the subtree remains connected, and no cut is made. Otherwise, the algorithm adds u
to R, effectively removing u from its parent by not including u in the merged subtree, ensuring that the offending subtree
rooted at u does not propagate upwards.

Since the traversal is post-order, all descendants of any vertex u have been processed before u itself. Therefore, when an
offending subtree is detected at u, none of its descendants have subtrees with spectral radius larger than λ. Consequently,
when the final vertex in the post-order is reached, all subtrees rooted at all other vertices satisfy the spectral radius threshold.

Thus, after Algorithm 6 terminates, we have that for all connected components (i.e., subtrees) after removal of vertices in R,
S ∈ C(T [V \ R]), ρ(T [S]) ≤ λ. Then, the desired claim follows from applying the equality relating the spectral radius
of a graph to the maximum of the spectral radii of its connected components: ρ(T [V \ R]) = maxS∈C(T [V \R]) ρ(T [S])
(Van Mieghem et al., 2011).

Claim D.4 (Completeness). If there exists a set R′ ⊆ V with |R′| ≤ K such that ρ(T [V \R′]) ≤ λ, then Algorithm 6 will
return True along with a set R ⊆ V with |R| ≤ K such that ρ(T [V \R]) ≤ λ.

Proof. Assume, for contradiction, that there exists a feasible solution R′ with |R′| ≤ K such that ρ(T [V \R′]) ≤ λ, but
Algorithm 6 returns False, implying |R| > K, where R is the set constructed by Algorithm 6.

When the algorithm processes the tree in post-order, it identifies and removes the root of each minimal offending subtree.
Moreover, following each removal of a subtree root, that subtree is never visited again by the algorithm. Thus, each element
of R corresponds to removing exactly one vertex from a distinct minimal offending subtree.

32

Structure Learning and Vaccination for Epidemic Control

Now if |R| > K, this implies that there are more than K distinct minimal offending subtrees in T . However, since each
such subtree requires at least one vertex removal and |R′| ≤ K, it is impossible to cover all offending subtrees with K
removals. This is a contradiction and thus Algorithm 6 must return True, establishing the optimality of the algorithm.

33

