

Learn to Vaccinate: Combining Structure Learning and Effective Vaccination for Epidemic and Outbreak Control

Paula Mürmann Patrick Thiran Sepehr Elahi

, Switzerland

Motivation

Controlling outbreaks (e.g., epidemics, misinformation, etc.) requires targeted interventions, but there are two main challenges:

- Unknown Network: The underlying contact graph showing who can infect whom is rarely known
- Limited Resources: We can only vaccinate a small fraction of the population, so interventions must be precise and impactful

The Propagation Model: SIS

- Underlying graph ${\cal G}$ with vertex states ${f S}$ usceptible or ${f I}$ nfected
- Edges represent all potential infection pathways
- Recovery ($\mathbf{I} \to \mathbf{S}$) with prob. p_{rec}
- Infection ($\mathbf{S} \to \mathbf{I}$) with prob. $\propto p_{inf}$ if neighbors are infected
- Vaccinated vertices: lower prob. of infection

- Susceptible Infected
- Vaccinated

Vaccinating an Unknown Graph Problem

Goal: Vaccinate K vertices to min. the expected extinction time

Challenge: Infection pathways (edges) are unknown

Our Approach to Solving the VUG Problem

- 1. **Learn** the underlying graph from observations: $\hat{\mathcal{G}}$
- 2. Compute the K vertices to **vaccinate** using learned graph $\hat{\mathcal{G}}$

Learning the Graph: SISLearn

Observations:

- Infection states of vertices over rounds $t \in \{1, 2, \dots, T\}$
- Edges are <u>not</u> observed

Idea: Learn neighbors of vertex v using a correlation indicator [1]

Correlation Indicator: Does a vertex u influence the state of v?

 $\mathbb{P}(v \text{ gets infected } \mid u \text{ is infected})$

Learning algorithm: Vertex-wise inclusion/exclusion mechanism

- 1. Build super-neighborhood from vertices with high influence on \boldsymbol{v}
- 2. Condition on the super-neighborhood and remove all vertices that do not influence v

Vaccination Strategies

Observation: Minimizing extinction time ≈ minimizing spectral ra**dius** of the graph $\rho(\mathcal{G}) := \max\{\lambda \mid \lambda \in \text{eigval}(\mathcal{G})\}$ [2]

Spectral Radius Minimization Problem (SRM)

Idea: Find vaccination set R^* using the SRM surrogate problem:

 $R^* = \operatorname{argmin} \rho(\mathcal{G}[V \setminus R])$ $R\subseteq V, |R|\leq K$

Challenge: SRM is NP-hard on general graphs

Exact approach: Dynamic Programming (DP) algorithm on the tree decomposition to compute the optimal vaccination set R^*

Heuristic approach: Greedy algorithm that iteratively vaccinates the vertex that reduces the spectral radius the most

Approach Name	Optimal on SRM	Time Complexity
DP	\checkmark	$\mathcal{O}(n^3K^32^\omega)$
Greedy	X	$egin{aligned} \mathcal{O}ig(n^3K^32^\omegaig) \ \mathcal{O}ig(n^3Kig) \end{aligned}$

where ω is the treewidth of the graph $\mathcal G$

Performance on Flu Outbreak Networks

DP and Greedy vs. baselines on augmented networks from the 2009 H1N1/H3N2 outbreak in Beijing (40 vertices and 80 edges) [3], learned using SISLearn (↓ is better)

Greedy vs. baselines on augmented networks from the 2009 H1N1 outbreak in Pennsylvania (286 vertices and 818 edges) [3], learned using SISLearn (↓ is better)

Performance with Limited Observations

 $\overline{\mathsf{DP}}$ on the learned graph $(\hat{\mathcal{G}}_{T'})$ from SISLearn using different numbers of rounds (T') for learning augmented 2009 Beijing H1N1/H3N2 networks (\ is better)

Greedy on the learned graph $(\hat{\mathcal{G}}_{T'})$ from SISLearn using different numbers of rounds (T') for learning augmented 2009 Beijing H1N1/H3N2 networks (↓ is better)

More Information & References

-] G. Bresler, "Efficiently learning ising models on arbitrary graphs," in STOC '15, 2015.
- 2] P. Van Mieghem, D. Stevanović, F. Kuipers, C. Li, R. van de Bovenkamp, D. Liu, and H. Wang, "Decreasing the spectral radius of a graph by link removals," Phys. Rev. E, 2011.
- J. C. Taube, P. B. Miller, and J. M. Drake, "An open-access database of infectious disease transmission trees to explore superspreader epidemiology," PLOS Biology, 2022.

Vaccination Extinction Learning