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Motivation

Controlling outbreaks (e.g., epidemics, misinformation, etc.) re-

quires targeted interventions, but there are two main challenges:

Unknown Network: The underlying contact graph showing who

can infect whom is rarely known

Limited Resources: We can only vaccinate a small fraction of the

population, so interventions must be precise and impactful

The Propagation Model: SIS

Underlying graph G with vertex states Susceptible or Infected

Edges represent all potential infection pathways

Recovery (I → S) with prob. prec

Infection (S → I) with prob. ∝ pinf if neighbors are infected

Vaccinated vertices: lower prob. of infection

Susceptible
Infected
Vaccinated

Vaccinating an Unknown Graph Problem

Goal: Vaccinate K vertices to min. the expected extinction time

Challenge: Infection pathways (edges) are unknown

Our Approach to Solving the VUG Problem

1. Learn the underlying graph from observations: Ĝ
2. Compute the K vertices to vaccinate using learned graph Ĝ

?

?

Learning

Vaccination

Learning the Graph: SISLearn

Observations:

Infection states of vertices over rounds t ∈ {1, 2, . . . , T}
Edges are not observed

Idea: Learn neighbors of vertex v using a correlation indicator [1]

Correlation Indicator: Does a vertex u influence the state of v?

P(v gets infected | u is infected)
Learning algorithm: Vertex-wise inclusion/exclusion mechanism

1. Build super-neighborhood from vertices with high influence on v

2. Condition on the super-neighborhood and remove all vertices

that do not influence v

Vaccination Strategies

Observation: Minimizing extinction time u minimizing spectral ra-

dius of the graph ρ(G) := max{λ | λ ∈ eigval(G)} [2]

Spectral Radius Minimization Problem (SRM)

Idea: Find vaccination set R∗ using the SRM surrogate problem:

R∗ = argmin
R⊆V,|R|≤K

ρ(G[V \ R])

Challenge: SRM is NP-hard on general graphs

Exact approach: Dynamic Programming (DP) algorithm on the tree

decomposition to compute the optimal vaccination set R∗

Heuristic approach: Greedy algorithm that iteratively vaccinates

the vertex that reduces the spectral radius the most

Approach Name Optimal on SRM Time Complexity

DP X O
(
n3K32ω

)
Greedy 7 O

(
n3K

)
where ω is the treewidth of the graph G

Performance on Flu Outbreak Networks
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DP and Greedy vs. baselines on augmented

networks from the 2009 H1N1/H3N2

outbreak in Beijing (40 vertices and 80 edges)

[3], learned using SISLearn (↓ is better)
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Greedy vs. baselines on augmented networks

from the 2009 H1N1 outbreak in

Pennsylvania (286 vertices and 818 edges) [3],

learned using SISLearn (↓ is better)

Performancewith Limited Observations
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DP on the learned graph (ĜT ′) from SISLearn
using different numbers of rounds (T ′) for
learning augmented 2009 Beijing

H1N1/H3N2 networks (↓ is better)
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Gr. (Ĝ800)
Gr. (G)

No vac.

Greedy on the learned graph (ĜT ′) from
SISLearn using different numbers of rounds

(T ′) for learning augmented 2009 Beijing

H1N1/H3N2 networks (↓ is better)
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