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Motivation

Controlling outbreaks (e.g., epidemics, misinformation, etc.) re-
quires targeted interventions, but there are two main challenges:

- Unknown Network: The underlying contact graph showing who
can infect whom is rarely known

- Limited Resources: VWe can only vaccinate a small fraction of the
population, so interventions must be precise and impactful

The Propagation Model: SIS

- Underlying graph G with vertex states Susceptible or Infectec
- Edges represent all potential infection pathways
» Recovery (I — S) with prob. p,..

- Infection (S — 1) with prob. o p;, s if neighbors are infected
- Vaccinated vertices: lower prob. of infection
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Vaccinating an Unknown Graph Problem

O Susceptible
@ Infected
© Vaccinated

Goal: Vaccinate K vertices to min. the expected extinction time

Challenge: Infection pathways (edges) are unknown

Our Approach to Solving the VUG Problem

1. Learn the underlying graph from observations: G
2. Compute the K vertices to vaccinate using learned graph g
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Learning the Graph: SISLearn

Observations:
- Infection states of vertices over rounds t € {1,2,...,T}

- Edges are not observed

ldea: Learn neighbors of vertex v using a correlation indicator [1]

Correlation Indicator: Does a vertex u influence the state of v?
P(v gets infected | u is infected)
Learning algorithm: Vertex-wise inclusion/exclusion mechanism

1. Build super-neighborhood from vertices with high influence on v
2. Condition on the super-neighborhood and remove all vertices

that do not influence v
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Performance on Flu Outbreak Networks
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Performance with Limited Observations

Observation: Minimizing extinction time = minimizing spectral ra-
dius of the graph p(G) := max{\A | A € eigval(G)} [2]

Spectral Radius Minimization Problem (SRM)

ldea: Find vaccination set R* using the SRM surrogate problem:

R* = argmin p(G[V \ R))
RCV,|R|<K

Challenge: SRM is NP-hard on general graphs

Exact approach: Dynamic Programming (DP) algorithm on the tree
decomposition to compute the optimal vaccination set R*

Heuristic approach: Greedy algorithm that iteratively vaccinates
the vertex that reduces the spectral radius the most

Time Complexity
O(ngKBZW)
(’)(nBK)

Approach Name Optimal on SRM

DP ve
Greedy X

where w Is the treewidth of the graph ¢
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