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Susceptible-Infected-Susceptible (SIS) Model

• Interacting particle system with applications to
• modeling of financial markets
• rumor spreading in social networks
• epidemics with reinfections

• Graph G = (V, E)
• vertices V: individuals in the population
• edges E: infection pathways

• Infection proceeds in rounds t ∈ 1, . . . , T:
• Vertex v is in state

susceptible (0) or infected (1)
• 1 → 0 with prob. prec
• 0 → 1 with prob. ∝ pinf if neighbors are infected

• v vaccinated: reduced infection probability
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Vaccinating an Unknown Graph (VUG) Problem

• Goal: vaccinate K vertices to minimize the expected extinction time of the
epidemic.

• Challenge infection pathways (edges) are unknown.
• Our approach: (1) learn the underlying graph G and (2) compute the optimal K

vertices to vaccinate.
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Structure Learning

• Observations:
• vertices and their infection states
• edges not observed

• Learn vertex neighborhood by
inclusion-exclusion mechanism

• Include a super-set of the true neighborhood
by correlation

• Exclude all non-neighbors by conditional
independence

• Theoretical results: we provide a
sample-complexity guarantee
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Vaccination

• Goal: minimize the expected extinction time of the epidemic
• Solve proxy problem of minimizing the spectral radius of the graph
• Two strategies

• exact polynomial-time algorithm for graphs with bounded tree-width
→ via tree-decomposition

• fast greedy heuristic for arbitrary graphs

Structure Learning and Vaccination for Epidemic Control Sepehr Elahi & Paula Mürmann 5



Experiments
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Figure: Vaccination results on flu outbreak graph
(China 2009) based on learned graph
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Figure: Vaccination results after different number
of learning steps
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Thank you for listening!

See you on Wednesday, July 16th, 4:30 pm at our poster
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