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Susceptible-Infected-Susceptible (SIS) Model

¢ Interacting particle system with applications to

® modeling of financial markets
® rumor spreading in social networks
® epidemics with reinfections
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Susceptible-Infected-Susceptible (SIS) Model

Interacting particle system with applications to
® modeling of financial markets
® rumor spreading in social networks
® epidemics with reinfections
Graph G = (V,E)
® vertices I: individuals in the population
® edges E: infection pathways

Infection proceedsinroundstel,...,T:

® Vertex visin state
susceptible (0) or infected (1)

® 1 — 0with prob. prec
® (0 — 1 with prob. « pins if neighbors are infected

e yvaccinated: reduced infection probability
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Vaccinating an Unknown Graph (VUG) Problem

® Goal: vaccinate K vertices to minimize the expected extinction time of the
epidemic.
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Vaccinating an Unknown Graph (VUG) Problem

® Goal: vaccinate K vertices to minimize the expected extinction time of the
epidemic.
¢ Challenge infection pathways (edges) are unknown.

® Our approach: (1) learn the underlying graph G and (2) compute the optimal K
vertices to vaccinate.
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Structure Learning

® QObservations:

® vertices and their infection states
® edges not observed ‘
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Structure Learning

® QObservations:
® vertices and their infection states
® edges not observed Q
e Learn vertex neighborhood by
inclusion-exclusion mechanism

® |nclude a super-set of the true neighborhood Q
by correlation
® Exclude all non-neighbors by conditional

independence ‘
® Theoretical results: we provide a
sample-complexity guarantee
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Vaccination

® Goal: minimize the expected extinction time of the epidemic
® Solve proxy problem of minimizing the spectral radius of the graph

® Two strategies

® exact polynomial-time algorithm for graphs with bounded tree-width
— via tree-decomposition
® fast greedy heuristic for arbitrary graphs
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Experiments
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Figure: Vaccination results on flu outbreak graph
(China 2009) based on learned graph
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Figure: Vaccination results after different number
of learning steps
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Thank you for listening!
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See you on Wednesday, July 16", 4:30 pm at our poster
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