

Learn to Vaccinate: Combining Structure Learning and Effective Vaccination for Epidemic and Outbreak Control

Sepehr Elahi, Paula Mürmann, Patrick Thiran EPFL, Switzerland

- Interacting particle system with applications to
 - modeling of financial markets
 - rumor spreading in social networks
 - epidemics with reinfections

- Interacting particle system with applications to
 - modeling of financial markets
 - rumor spreading in social networks
 - epidemics with reinfections
- Graph G = (V, E)
 - vertices V: individuals in the population
 - edges E: infection pathways

- Interacting particle system with applications to
 - modeling of financial markets
 - rumor spreading in social networks
 - epidemics with reinfections
- Graph G = (V, E)
 - vertices V: individuals in the population
 - edges E: infection pathways
- Infection proceeds in rounds $t \in 1, ..., T$:

- Interacting particle system with applications to
 - modeling of financial markets
 - rumor spreading in social networks
 - epidemics with reinfections
- Graph G = (V, E)
 - vertices V: individuals in the population
 - edges E: infection pathways
- Infection proceeds in rounds $t \in 1, ..., T$:
- Vertex v is in state susceptible (0) or infected (1)
 - $1 \rightarrow 0$ with prob. p_{rec}
 - $0 \to 1$ with prob. $\propto p_{inf}$ if neighbors are infected

- Interacting particle system with applications to
 - modeling of financial markets
 - rumor spreading in social networks
 - epidemics with reinfections
- Graph G = (V, E)
 - vertices V: individuals in the population
 - edges E: infection pathways
- Infection proceeds in rounds $t \in 1, ..., T$:
- Vertex v is in state susceptible (0) or infected (1)
 - $1 \rightarrow 0$ with prob. p_{rec}
 - $0 \to 1$ with prob. $\propto p_{inf}$ if neighbors are infected

- Interacting particle system with applications to
 - modeling of financial markets
 - rumor spreading in social networks
 - epidemics with reinfections
- Graph G = (V, E)
 - vertices V: individuals in the population
 - edges E: infection pathways
- Infection proceeds in rounds $t \in 1, ..., T$:
- Vertex v is in state susceptible (0) or infected (1)
 - $1 \rightarrow 0$ with prob. p_{rec}
 - $0 \to 1$ with prob. $\propto p_{inf}$ if neighbors are infected

- Interacting particle system with applications to
 - modeling of financial markets
 - rumor spreading in social networks
 - epidemics with reinfections
- Graph G = (V, E)
 - vertices V: individuals in the population
 - edges E: infection pathways
- Infection proceeds in rounds $t \in 1, ..., T$:
- Vertex v is in state susceptible (0) or infected (1)
 - $1 \rightarrow 0$ with prob. p_{rec}
 - $0 \rightarrow 1$ with prob. $\propto p_{\text{inf}}$ if neighbors are infected
- v vaccinated: reduced infection probability

Vaccinating an Unknown Graph (VUG) Problem

• **Goal:** vaccinate *K* vertices to minimize the expected extinction time of the epidemic.

Vaccinating an Unknown Graph (VUG) Problem

- **Goal:** vaccinate *K* vertices to minimize the expected extinction time of the epidemic.
- Challenge infection pathways (edges) are unknown.

Vaccinating an Unknown Graph (VUG) Problem

- **Goal:** vaccinate *K* vertices to minimize the expected extinction time of the epidemic.
- Challenge infection pathways (edges) are unknown.
- **Our approach:** (1) learn the underlying graph *G* and (2) compute the optimal *K* vertices to vaccinate.

- Observations:
 - vertices and their infection states
 - edges **not** observed

- Observations:
 - vertices and their infection states
 - edges **not** observed

- Observations:
 - vertices and their infection states
 - edges **not** observed

- Observations:
 - vertices and their infection states
 - edges **not** observed
- Learn vertex neighborhood by inclusion-exclusion mechanism

- Observations:
 - vertices and their infection states
 - edges **not** observed
- Learn vertex neighborhood by inclusion-exclusion mechanism
 - Include a super-set of the true neighborhood by correlation

- Observations:
 - vertices and their infection states
 - edges not observed
- Learn vertex neighborhood by inclusion-exclusion mechanism
 - Include a super-set of the true neighborhood by correlation
 - Exclude all non-neighbors by conditional independence

- Observations:
 - vertices and their infection states
 - edges not observed
- Learn vertex neighborhood by inclusion-exclusion mechanism
 - Include a super-set of the true neighborhood by correlation
 - Exclude all non-neighbors by conditional independence
- Theoretical results: we provide a sample-complexity guarantee

Vaccination

- Goal: minimize the expected extinction time of the epidemic
- Solve proxy problem of minimizing the spectral radius of the graph
- Two strategies
 - exact polynomial-time algorithm for graphs with bounded tree-width
 - \rightarrow via tree-decomposition
 - fast greedy heuristic for arbitrary graphs

Experiments

Figure: Vaccination results on flu outbreak graph (China 2009) based on learned graph

0.4Proportion infected 0.3 Rand. --DP ($\hat{\mathcal{G}}_{100}$) 0.2 -DP $(\hat{\mathcal{G}}_{200})$ $DP (\hat{\mathcal{G}}_{400})$ 0.1 $\stackrel{'}{\sim}$ DP ($\hat{\mathcal{G}}_{800}$) 0.0 250 500 750 1000 Rounds after vaccination

0.5

Thank you for listening!

See you on Wednesday, July 16th, 4:30 pm at our poster